
Journal of Global Optimization 8: 107-138, 1996.
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands.

107

A Branch-and-Reduce Approach to Global
Optimization

HONG S. RYOO and NIKOLAOS V. SAHINIDIS”
Department of Mechanical & Industrial Engineering, The University of Illinois at
Urbana-Champaign, 1206 West Green Street, Urbana, Illinois 61801, U.S.A.

(Received 15 October 1994; accepted: 4 September 1995)

Abstract. This paper presents valid inequalities and range contraction techniques that can be used to
reduce the size of the search space of global optimization problems. To demonstrate the algorithmic
usefulness of these techniques, we incorporate them within the branch-and-bound framework. This
results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm
components and theoretical properties are provided. Specialized algorithms for polynomial and
multiplicative programs are developed. Extensive computational results are presented for engineering
design problems, standard global optimization test problems, univariate polynomial programs, linear
multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the
problems solved, the computer implementation of the proposed algorithm provides very accurate
solutions in modest computational time.

Key words: Global optimization, range reduction, branch-and-bound, polynomial programming,
multiplicative programming, mixed-integer nonlinear programming, quadratic programming.

1. Introduction

The problem considered in this paper is:

(P) : glob min f(2)

s.t. s(x) I: 0
XEX

where f : X + %, g : X + F’+, and X c Fp.
It will be assumed that a solution exists. We are interested in finding the solution

and in proving its global optimality. Global optimization problems are AU’-hard
problems. Even proving that a solution is not a local minimizer for certain problems
is NP-complete (e.g., Murty and Kabadi [44], Pardalos and Schnitger [49]). In the
absence of convexity, traditional (local) nonlinear programming methods may fail
to locate the global optimum of P. Recently, however, there has been a growing
interest in global optimization problems as they have numerous applications in
various fields: structural and shape optimization (Rozvany [52], Haftka and Gurdal
[21]), mechanical equipment and parts design (Wilde [73], Papalambros and Wilde

* Address all correspondence to this author (e-mail: nikoshiuc . edu).

108 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

[46], Anagnostou et al. [3]), analysis and design of control systems (Balakrishnan
[4]), integrated circuit design (Brayton et al. [6]), prediction of molecular structures
(Pardalos et al. [50]) and complex process design (Floudas and Pardalos [181).

Motivated by the large number of applications, a number of global optimiza-
tion algorithms have- been developed. These algorithms can be classified as either
stochastic or deterministic depending upon whether they involve stochastic ele-
ments or not. Stochastic methods converge to the global optimum with a proba-
bility approaching one as their running time goes to infinity (Torn and Zilinskas
[65], Schoen [56]). Deterministic approaches, on the other hand, take advantage
of the mathematical structure of the problem and often guarantee finite conver-
gence within a prespecified level of accuracy. Deterministic approaches include
branch-and-bound (Falk and Soland [16], Tuy and Horst [69]), cutting plane algo-
rithms (Tuy [66], Hillestad and Jacobsen [26], Tuy [67]) and hybrid schemes that
involve cutting planes, decomposition and branch-and-bound. Recent surveys of
deterministic methods can be found in Horst and Tuy [28] and Pardalos and Horst
[481.

Shortly after the development of branch-and-bound methods for integer pro-
grams, the application of the same principles was suggested for continuous global
optimization problems (Falk and Soland [16], Soland [59]). Branch-and-bound
methods develop lower and upper bounds of the optimal objective function value
over subregions of the search space. Optimality and feasibility criteria are employed
in order to exclude certain subregions from further consideration while other sub-
regions are dynamically refined. Although branch-and-bound techniques have led
to the successful solution of large-scale integer problems, a great deal of difficulty
seems to arise in the context of continuous problems. Continuous problems solved
to proven global optimality so far have typically involved only a few variables and
constraints.

To improve the performance of branch-and-bound-based algorithms, sever-
al approaches have been suggested. First, the observation that globally optimal
solutions are often found early in the search has motivated the development of
sufficient conditions under which a local minimizer is also a global minimizer
(e.g., Falk [15], McCormick [40], Hiriart-Urruty [27], Phillips and Rosen [51],
Danninger [9], Neumaier [45]). Another attempt for improving the performance
of branch-and-bound methods has been through the development of tight relax-
ations (e.g., McCormick [39], Sherali and Alameddine [57]). In other approaches,
range reduction techniques have been developed to confine the search to a smaller
space. By construction, relaxations developed over the resulting, smaller feasible
spaces are tighter, and the convergence of the algorithm is accelerated (Thakur [63],
Hansen et al. [23], Hamed and McCormick [22], Lamar [34], Ryoo and Sahini-
dis [54]). Finally, realizing the importance of the subdivision strategy employed
in branch-and-bound algorithms, Tuy [68] presented subdivision strategies that
are less restrictive from the theoretical point of view and improve the practical
performance of the algorithms substantially.

A BRANCH-AND-REDUCE APPROACH 109

The approach taken in this paper aims at improving the performance of glob-
al optimization algorithms by means of effective range reduction techniques.
Although these techniques can be used in conjunction with any global optimization
algorithm, we demonstrate their effectiveness within the branch-and-bound frame-
work. We further develop the algorithm of Ryoo and Sahinidis [54], provide conver-
gence proofs, develop specialized algorithms for univariate polynomial programs
and linear multiplicative programs, describe a highly efficient implementation and
present extensive computational results. Section 2 provides necessary background
material on branch-and-bound. Section 3 presents optimality-based valid inequali-
ties for problem P. These inequalities form the basis for the development of range
reduction mechanisms. Applied at each node of the search tree, range reduction
converts a standard branch-and-bound algorithm into a brunch-and-reduce global
optimization algorithm. The details of the resulting global optimization algorithm
are discussed in Section 4 and a convergence analysis is provided. An example
is presented in Section 5. Specialized branch-and-reduce algorithms for univariate
polynomial problems and linear multiplicative programming problems are devel-
oped in Sections 6 and 7, respectively. Section 8 describes BARON, the computer
implementation of the proposed algorithm, and presents extensive computational
experiments with various classes of problems. The problems tested include engi-
neering design problems, standard global optimization test problems, polynomial
programs, concave quadratic minimization programs, linear multiplicative pro-
grams and mixed-integer nonlinear programs. Finally, conclusions are provided in
Section 9.

2. Preliminaries

Branch-and-bound (BB) is one of the most commonly used techniques in global
optimization. Here, branching refers to successive partitioning (or subdivision) of
the feasible domain, and bounding refers to the computation of lower and upper
bounds, L and U, respectively, for the global optimum. The main feature of BB is
its ability to delete inferior subsets of the original search space during the iteration
process. At any iteration, subregions whose lower bounds, L,, are no better than
the current upper bound (L, > U) can be deleted from the search. A typical BB
for solving P is as follows:

ALGORITHM 1. Brunch-and-Bound (at iteration Ic):

Step 1. Partitioning:

Partition the search region into finitely many subregions, Ml, 1 = 1, . . . , s.

Step 2. Bounding:

Select a subregion, Mi, and determine lower and upper bounds, L, and U,,
such that L, < f(z) < Vi, Vx E iI&.

110 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

Step 3. Global Bounding:

Set L(k) = min {Ll : I = 1, . . . , s} and UC”) = min {Ul : I = 1, . . . , s}.

Step 4. Termination and Subproblem Selection:

IfL(“) = UC’“),

Stop. An optimal solution has been found.

Otherwise,

Select a subregion.

Setktkfl.

Repeat the process from Step 1.

DEFINITION 1. A BB algorithm is calledfinite if L(k) = Utk) for some k < 00.

If a BB algorithm is finite, a globally optimal solution is obtained at termination
of the algorithm. On the other hand, if BB does not terminate in a finite number of
steps, one needs to address the limit behavior.

DEFINITION 2. A BB algorithm is called convergent if limk,, IU(k) -L(“) 1 = 0.

There are three crucial operations in BB which determine the convergence prop-
erties of the algorithm. These are partitioning (branching), bounding and selection
and correspond to steps 1, 2 and 4, respectively, in the above algorithm.

DEFINITION 3. (Definition IV.4 of Horst and Tuy [28]). A bounding operation
is called consistent if at every step any unfathomed partition element is capable
of further refinement and any infinitely decreasing sequence A&* of successively
refined partition elements satisfies lim,,,]Ui - Lfq 1 = 0.

The last relationship requires that, whenever an infinitely decreasing sequence of
partition sets emanating from a parent set converges to a certain limit set, the lower
bound over this limit set also converges to the upper bound of the objective over the
parent set. This condition is implied if the lower bound over the limit set converges
to the upper bound over this limit set: lim,,, \Uqq - Li, 1 = 0.

DEFINITION 4. (Definition IV.6 of [28]). The selection operation is said to be
bound improving if at least one partition element where the actual lower bound is
attained is selected for further partition.

THEOREM 1. (Theorem IV3 of [28]). In the infinite BB procedure, suppose that
the bounding operation is consistent and the selection operation is bound improv-
ing. Then, the procedure is convergent.

A BRANCH-AND-REDUCE APPROACH 111

In this paper, it will be assumed that a convergent (or finite) branch-and-bound
algorithm is readily available for problem P. Although several such algorithms
exist, often times the performance of a BB algorithm is not satisfactory, especially
when the gap between the initial upper and lower bounds is large. In such a case,
BB exhibits a slow, asymptotic convergence behavior. This behavior necessitates
the development of methods to expedite convergence. To that effect, the following
section develops range reduction mechanisms which can be used to detect and
delete from further consideration inferior parts of the search space.

3. Valid Inequalities and Range Reduction

Consider the following relaxation of P:

CR) : min f(x)

s.t. G(x) 5 0

XEX

where f : X + ?12,3 : X -+ !Rm, X C X c Rn, such that, for any x feasible to P,
f(x) < f(x), and where {x : g(x) 5 0, x E X} c {Z : O(Z) 5 0, II: E X}.

ASSUMPTION 1. R is a convex programming problem.

ASSUMPTION 2. A dual-adequate algorithm is available for solving R (An
algorithm is called dual-adequate if it provides the dual solution in addition to the
primal solution).

Now, consider the perturbation of problem R:

P%) : CP(Y) = min f(x)
s.t. g(x) 5 y

XEX

As R is convex, so is R, for any y. Therefore, traditional nonlinear optimization
techniques can be used to solve R, to global optimality since a local minimizer
of R, is also a global optimizer. The following lemma is trivial to prove by
contradiction.

LEMMA 1. Let constraint gi (x) 5 0 be active at a solution of problem R. Then,
& (x) 5 yi for y2 < 0 is also active at the solution of problem R,.

The next lemma summarizes well-known properties of the perturbation problem.

LEMMA 2. (e.g., Theorem 5.4 of Minoux 1411). Assuming that R has an optimum
ofjnite value, p E ?J?” 1s a saddle-point multiplier if and only if the hyperplane
with equation z = ~(0) - p * y is a supporting hyperplane at y = 0 of the graph

112 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

of the perturbation function cp(y). In other words, p is a saddle-point multiplier if
and only if

vy E 8” : cp(Y) 2 cp@) - P ’ Y

This lemma ensures that a saddle point exists and the perturbation function is
convex if R is a convex program satisfying standard constraint qualifications (e.g.,
[41]). On the basis of Lemmas 1 and 2, valid inequalities for P can be derived.

DEFINITION 5. Let U be a known upper bound for P. An inequality is called
valid for P if it does not exclude any solutions of P with objective function values
better than U.

THEOREM 2. Let R be a convex optimization problem with an optimal objective
function value of L and consider a constraint gi (x) < 0 that is active at the solution
of problem R with a dual multiplier value of p2 > 0. Let U be a known upper bound
for problem P. Then, the following constraint is valid for P:

&(x> 2 -(U - -q/Pi
Proof Consider the following perturbation of problem P:

WY> : a(y) = glob min f(z)

s.t. 964 5 Y
XEX

Obviously, R, is a convex relaxation of PY for any y. Therefore, ‘p(y) 5 a(y),
and a valid underestimator of p(y) is also a valid underestimator of cP(y). Now
consider the perturbation problem R, where only the right hand side of constraint
&(x) < yi is perturbed. From Lemma 2, we know that an underestimator for
cp(y/i) is provided by its linear support L - /Liyt. Therefore, for any yzr we have
L - pi yi I cp(yi) I G(y?). Now, requiring the value of @(y%) to be no higher than
the already known upper bound U yields L - CL; yi(< @(yi)) < U. Finally, since
&(x) 5 yi is active for yz = 0, the constraint will also be active in the solution
of R, for any y; < 0 (Lemma 1). Therefore, L - pigi = L - u;y; 5 U. This
constraint is valid for all feasible values of 2, as for any feasible x there exists a
corresponding yi for which &(z) < yi is active. 0
In the above proof, (1) - which might be nonconvex - was derived as a relaxation
of the objective function cut $(x) < U - which is a convex constraint. However,
(1) is easier to work with computationally as it is often linear as shown next.

COROLLARY 1. Let R be a convex programming problem with an optimal objec-
tivefunction value of L and consider a linear constraint a:x - b, 5 0 that is active
at the solution of problem R with a dual multiplier value of pi > 0. Let U be a
known upper bound for problem P. Then, the following constraint is valid for P:

afx 2 b, - (U - L)/ul. (2)

A BRANCH-AND-REDUCE APPROACH 113

COROLLARY 2. Let R be a convex programming problem with an optimal objec-
tivefunction value of L and consider a range constraint xj - x7 < 0 that is active
at the solution of problem R with a dual multiplier value of Xj > 0. Let U be a
known upper bound for problem P. Then, the following constraint is valid for P:

xj 2 x5’ - (U - L)/Xj.

COROLLARY 3. Let R be a convexprogramming problem with an optimal objec-
tivefinction value of L and consider a range constraint x,” - xi 5 0 that is active
at the solution of problem R with a dual multiplier value of Xj > 0. Let U be a
known upper bound for problem P. Then, the following constraint is valid for P:

xj 5 x; + (U - L)/Xj.

The development of valid inequalities (l)-(4) is based on the set of constraints that
are active at the solution of the relaxed problem R. Valid inequalities, however, can
also be derived from constraints that are not active in the solution of R by probing
at certain parts of the feasible region where constraints might become active. In
particular, one can temporarily fix the right-hand-side of an inactive constraint
at some point, solve the partially restricted relaxed problem and obtain a linear
support of the perturbation function at the solution point. This support can then be
used to derive a valid inequality:

THEOREM 3. Let R be a convex programming problem and consider a linear
constraint a,“x - bi 5 0 that is not active at the solution of R. Let U be a known
upper bound for problem P. Solve R a$terJixing six at b,, i.e., after adding the
constraint b, 5 afx in the formulation. Let Z be the optimal objective function
value of this partially restricted relaxed problem. If a positive dual multiplier u,
is obtained for constraint bi 5 six in the solution of the new problem, then the
following constraint is valid for P:

afx 5 bi + (U - Z)/pi. (5)

The proof of this theorem is omitted as it is similar to that of Theorem 2. Note
only that the optimal value Z of the partially restricted relaxed problem may not
provide a valid lower bound for P. In fact, (5) provides a useful constraint only
whenever Z > U.

COROLLARY 4. Let R be a convex programming problem and consider a range
constraint x3 - x5/ < 0 that is not active at the solution of R. Let U be a known
upper bound for problem P. Solve R after fixing xj at x5’, i.e., after adding
x7 < xcj in the formulation. Let Z be the optimal objective function value of this
partially restricted relaxed problem. If a positive dual multiplier Xj is obtained
for constraint x5/ 5 xj in the solution of the new problem, then the following
constraint is valid for P:

xj < x:’ + (U - Z)/Xj. (6)

114 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

COROLLARY 5. Let R be a convex programming problem and consider a range
constraint x:j - x,” > 0 that is not active at the solution of R. Let U be a known
upper boundforproblem P. Solve R after$xing xj at x$, i.e., after adding xcj 5 x[
in the formulation. Let Z be the optimal objective function value of this partial&
restricted relaxed problem. If a positive dual multiplier Xj is obtainedfor constraint
xj < x,” in the solution of the new problem, then the following constraint is valid
for P:

xj > x,” - (U - Z)/Xj. (7)

The valid inequalities derived in this section and the range reduction mechanisms
based on them are summarized in Tables I and II. We use p to denote the optimal
dual multipliers of linear/nonlinear constraints and X to denote the optimal multi-
pliers (reduced costs) of simple variable bounds (range constraints). These valid
inequalities were derived based on the optimal solution of the relaxed problem
and by using an optimality argument. For this reason, they will be referred to as
optimality-based valid inequalities. Although they may exclude solutions that are
feasible to P, they do not exclude any solutions of P with objective function values
better than U. Also, as (l)-(7) reduce the range of constraints and variables, they
will be referred to as optimality-based range reduction mechanisms.

TABLE I. Valid inequalities derived from active constraints.

Active Constraint Requirement Valid Inequality

TABLE II. Valid inequalities derived from inactive constraints after probing.

Inactive Constraint Requirement Valid Inequality

Add b, 5 at.7: to R.

atx-b, <O Solve R and obtain Z. afx I b, + (c’ - Z)/p*.

pi > 0

xj < xy

Add xy 5 x, to R.

Solve Rand obtain Z. Xj 5 Xy + (I; - Z)/Xj

Xj > 0

Add x1 5 x,” to R.

Solve R and obtain Z. x3 2 x,” - (I: - Z)/X,
A, > 0

A BRANCH-AND-REDUCE APPROACH 115

Remark I. Since R was assumed to be a convex problem, it follows that (1) is
a nonconvex (reverse convex) constraint if the corresponding inequality of R is
nonlinear. Therefore, adding (1) to the relaxation destroys convexity. Still, (I) - as
well as f(x) 5 U and f(z) 5 U - can be used for tightening variable bounds. In
general, it is possible to use constraints along with feasibility arguments to reduce
variable ranges (Hansen et al. [23], Hamed and McCormick [22], Ryoo [53], Ryoo
and Sahinidis [54]). This process will be referred to as feasibility-based range
reduction.

Remark 2. Theorem 3 applies equally well when probing is done to any point b:,
not necessarily equal to the right-hand-side of the constraint. In particular, probing
can be applied by adding, for example, the constraint bi 5 afa: into the formulation
of R for any b: 5 bi. Following the solution of problem R, one possibility is to use
parametric optimization techniques to calculate the optimal value of the objective
function as the value of a certain constraint is changed. This process can be stopped
at the point where the objective becomes equal to the known upper bound U. At
that point, the support of the perturbation function can be used to derive a new
valid inequality.

4. A Branch-and-Reduce Global Optimization Algorithm

It should be obvious that the range reduction techniques of the previous section can
be used to preprocess a global optimization problem before the use of any global
optimization algorithm. In the context of a branch-and-bound algorithm, range
reduction can be used to improve the performance of the bounding procedure
at every node of the search tree. The following are the steps of the proposed
algorithm:

ALGORITHM 2. Branch-and-Reduce:

Initialization Step

Set Ic = 0.

Set the upper bound UC”) = +IX.

Put RI = R in the list ACTIVE of active subproblems with a corresponding
lower bound of Ll = -cc.

Go to the main step.

Main Step (at iteration k)

Step 1. Termination:

Set the lower bound L(“) = minZ:Ri6ACTIVE {&}.

Set ACTIVE t ACTIVE\{Rj} for all Rj with L, 2 UC”).

116 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

If ACTIVE = 0,

Stop. The current best solution is optimal.

Otherwise,

Set Ic t Ic + 1, UC’) t U(‘-‘) and L(“) t L(“-‘1.

Go to Step 2.

Step 2. Subproblem Selection:

Select Ri from ACTIVE according to a node selection rule.

Set ACTIVE t ACTIVE\{Ri}.

Go to Step 3.

Step 3. Pre-processing:

Tighten variable bounds for Ri using feasibility-based range reduction.

Go to Step 4.

Step 4. Bounding:

Solve Ri, or bound its solution from below. Let L, be this lower bound (L, =
+cc if Ri is infeasible.)

If the solution, xi, found for R, is feasible to P and f(z’) < UC”),

Update U(“) t f(zi).

Make x7 the current best solution: x* t z’.

If Li 2 u(“),

Go to Step 1.

Otherwise,

Go to Step 5.

Step 5. Optional Upper Bounding:

Apply local search heuristics to find a better feasible solution, xh, for P. If
successful,

Update UC”) t f(xh).

Make xh the current best solution: x* t xh.

Go to Step 6.

Step 6. Post-processing:

Strengthen the bounds of variables using optimality-based and feasibility-
based range reduction.

ABRANCH-AND-REDUCEAPPROACH 117

If the range reduction was successful in reducing the range of at least one
variable of Ri by at least a prespecified amount S > 0, then:

Reconstruct Ri, using the new variable bounds.

Go to Step 4.

Otherwise,

Go to Step 7.

Step 7. Partitioning:

Apply a branching rule to Ri: obtain a set of new subproblems R,, , R,?,
Ri, and place them on ACTIVE.

Go to Step 1.

4.1. COMPONENTS OF THE BRANCH-AND-REDUCE ALGORITHM

4.1.1. Selection Operation

Selection of a subproblem is accomplished by means of the best-bound-jut rule:

Operation Node Selection:

Select a subproblem Ri with i E arg minj,R, EACTIVE{ Lj}.

Therefore, a subproblem where the actual lower bound of the previous iteration
is attained is always selected for further refinement. This node selection rule is
bound improving by definition. Bound improvingness will, in general, be required
for convergence and is not shared by other branching rules such as depth-first.

4.1.2. Partitioning Operation

The partitioning operation is required to satisfy xi, c xi for all 4. This requirement
is met by several partitioning schemes: conical, simplicial or rectangular (Tuy et al.
[70], Tuy [68]). Any of them can be used in the context of the above algorithm. We
prefer rectangular subdivisions for their simplicity. Let zk be an optimal solution
of the relaxed subproblem Ri selected in Step 2 at iteration ,k of the algorithm.
Also, let z* be the incumbent solution and K be a pre-specified positive integer.
The following is the rectangular partitioning operation of the algorithm:

Operation Partitioning:

Select a variable x3 which is “mostly responsible” for the difference U, - Lt.

ifk=NK(N= 1,2,...),then

118

set w = (+’ + zy”;)/2

HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

else

if ~5’~
3 < XT < xy’” then set w = x:j* else set w = xf .I

endif.

Create two subproblems by subdividing [x,“~“, x7”] into [xf’“, w] and [w: xyk].

The first step in the above operation is to select the branching variable. This
should be done in a way that will lead to the largest possible reduction of the relax-
ation gap. The exact variable selection rule will therefore depend on the bounding
procedure used. If, for example, separable relaxations are used (e.g., [38]), one can
select a variable corresponding to a nonconvex term in P whose underestimator in
Ri has the largest distance from the nonconvex term at the solution of Ri. A simpler
variable selection rule is to select a variable corresponding to the largest range:
j E argmaxjf (~2” - x$“,. Once the branching variable is selected by standard
means, Partitioning uses a combined maximum-deviation/bisection/incumbent-
branching rule for branching point selection. In a typical iteration, the solution
of Ri is used as the branching point. Bisection ensures a reasonable reduction in
the sizes of the descendant subrectangles every K iterations. Finally, whenever
possible, the branching point is positioned in a way that eliminates the gap at the
incumbent solution. For any given x*, this last modification of the standard max-
imum deviation branching point will occur no more than n times in any nested
sequence of subdivisions. The following is immediate.

PROPOSITION 1. Operation Partitioning guarantees xi, C xi, for all q.

4.1.3. Bounding Procedure

The bounding procedure is comprised of Steps 3,4, 5 and 6 of the algorithm. The
underestimating functions and relaxed problems of Step 4 are required to possess
the following properties:

REQUIREMENT 1. Let Gi := {x E ?R2” : ijl(~) < 0, I = l,...,m} for some
subproblem R, . Then, we have Gi, c Gi for all q descendants of Ri.

REQUIREMENT 2. Li = U, if xy = x,” for all nonconvex variables of P in the
relaxed problem R;. (Here, the term nonconvex is used to denote those variables
that appear in nonconvex terms in P.)

From Requirement 1, Assumption 1 and Proposition 1, it follows that:

PROPOSITION 2. Ali9 = Giq n xz, c Gi n J?, = A& and Lig > Li for ~11 q.

A BRANCH-AND-REDUCE APPROACH 119

The construction of relaxed problems that satisfy the above requirements can be
done in more than one way (e.g., Falk and Soland [161, McCormick [38,39], Sherali
and Alameddine [57]). We prefer to use factorable programming techniques [38,
391 for their simplicity. In all of the above lower bounding approaches, the tightness
of the lower bound directly depends on the tightness of the variable bounds. For this
reason, Step 3 applies feasibility-based range reduction techniques to obtain tighter
variable bounds. Similarly, optimality-based and feasibility-based range reduction
mechanisms are used in Step 6 after the solution of the current relaxed problem.

Finally, Step 5 performs the optional upper bounding operation. Any prob-
lem specific heuristic or any other global optimization method - for example,
a stochastic optimization method - can be incorporated in this step. Successful
variable bounds tightening in Steps 3 and 6 will facilitate the calculation of good
feasible solutions in Step 5. The reverse is also true as a tighter upper bound, U,
on the optimal objective implies the possibility of further range reduction through
the inequalities of Tables I and II. Additionally, range reduction based on objective
function cuts is facilitated by a stronger upper bound U.

PROPOSITION 3. The branch-and-reduce algorithm does not cycle between Steps
4 and 6.

Proofi Steps 4 to 6 are repeated only if range reduction is successful in reducing
the range of at least one variable of Ri by at least a prespecified amount 6 > 0.
As the feasible region is bounded (xi E x C Zl?), this range reduction can only
happen a finite number of times before either Ri is deleted by infeasibility or infe-
riority (in Steps 4 or 5), or X~ ’ = x4 for all nonconvex variables, in which case
Li = U, (from Requirement 2) and sibproblem Ri will again be deleted in Step 4. q

Remark 3. Another way to ensure that the algorithm does not cycle between
Steps 4 and 6 is to monitor the effect of range reduction on the lower bound of R,
and to return to Step 4 only if the improvement is larger than a certain prespecified
positive amount.

4.2. CONVERGENCEOFTHEALGORITHM

The analysis will be based on Theorem 1 of Section 2 and the above mentioned
properties of the partitioning rule and relaxations used. Without loss of generality,
we can assume that f is continuous over G n x (follows from convexity).

LEMMA 3. The bounding operation in the algorithm is consistent.
Prooj In order to prove the consistency of the bounding operation, we need to

prove that for any infinitely nested sequence IMi, generated by the algorithm, we
have lim,,, pi* - Li* 1 = 0. L e X* be the solution of Ri,. There are two cases t
to consider:

120 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

Case 1. f is (semi) continuous:
Whenever there is a positive underestimation gap, the gap is due to the presence

of nonconvex variables with ~7” - xi”” > 0. By the (semi) continuity of f and f
and by Requirement 2, we have lim &(x4) = f* = lim f(zQ) as (zy” - zctq) + 0
for all nonconvex variables meaning that lim,,,]Uiq - Li, 1 = 0.

Case 2. f is discontinuous:
(i) First, consider the case in which there is a discontinuity only at Xd, and Xd

is the unique globally optimal solution of problem P. Since (xy” - x,“‘“) + 0 as
Q -+ 00 and since f is (semi) continuous at every feasible point other than Xd, we
have fj(xj) + f (x2) for all lMzj except IMzg where X,j is contained. Therefore,
&fig will remain as the only unfathomed partition element as q + cc. Moreover,
by the continuity and convexity off; we have lim,,, f,(xq) = f” = Lfq (Such a
limit exists since {f,(xq)} is monotone and bounded above by f (xq)). Now since
Xd = lim,,, x4, as q + 00 ,
= f”(xd) = Lip.

we have (Since Xd iS feasible t0 P) Uip = f (Xd)

For the case where Xd is one of many globally optimal solutions, since we set
Uig as the lowest upper bound found, lim,,, IUi9 - Liq 1 = 0 is ensured as in
Case 1. Finally, it should be obvious that for other cases where Xd is not a globally
optimal solution, lim,,, lUig - Liq 1 = 0 is ensured in a similar way as in Case
1.

(ii) The case where there are more than one discontinuities in f eventually
reduces to Case 2.(i) as the branch-and-bound procedure is applied, and, therefore,
lim,,, IQ - Lzq 1 = 0 will be achieved in the same way as above. 0

THEOREM 4. The branch-and-reduce algorithm converges to the solution of P.
Pro05 The proof follows from Theorem 1 and the following:

(i) The range reduction mechanisms are valid. Hence, even though the range
reduction Steps 3 and 6 may eliminate feasible solutions, none of these solutions
is better than the current incumbent (Definition 5).

(ii) The bounding operation employed in the algorithm is consistent (Lemma 3).
(iii) The selection operation of the algorithm is bound improving (Definition 4).
(iv) Cycling is not possible in the algorithm (Proposition 3). 0

5. Example

The following example is taken from Al-Khayyal and Falk [2]:

glob min -xl + 21x2 - 22

s.t.

-6x1 +8x2 5 3

3x1 -22 5 3

(Xk x,“) = 0 < 2 5 5 = (XY, X3

63)

(9)

(10)

A BRANCH-AND-REDUCE APPROACH 121

This is a jointly constrained bilinear program with a nonextremal boundary
optimal solution at x = (1.16667, 0.5)t with f = -1.08333. The objective has
only one bilinear term (~1x2) whose convex envelope is readily available (e.g.,
McCormick [39], Al-Khayyal and Falk [2]): max{@xl + xyx2 - z?z~, xtzt +
Z$Z~ - xtxi}. To avoid non-differentiability in the relaxed problem formulation,
we let 23 = 21x2 and include two additional constraints:

min -xl - x2 + x3

s.t.

xyx1 + xyx2 - x3 5 xI;‘xy

xix, + xfx2 - x3 < xfxi

Constraints (@-(lo).

A standard branch-and-bound algorithm corresponds to executing Steps 1,2,4,
5 and 7 without modifying the maximum deviation branching point as described in
Section 4.1.2. This algorithm requires 5 1 iterations to reduce the difference between
the upper and lower bounds to within low6 despite the fact that the optimal solution
was found at the root node by the local minimization step (Step 5). If operation
Partitioning is used to modify the branching point, then the search requires only
13 iterations using the same termination criterion as above (10P6). We will now
illustrate the effect of range reduction mechanisms. In particular, inequalities (3),
(4), (6) and (7) will be used for optimality-based range reduction. In addition,
feasibility-based range reduction will be done by analyzing the constraints. For
example, (8) will be used to generate two valid inequalities: xl > (8x,” - 3)/6
and 22 5 (6x? + 3)/8. Finally, the objective function cut -xl + 21x2 - x2 5 U
yields two inequalities for xl: min{xfxi - xk - U, xfxy - xy - U} 5 x1 and
21 < (U + xy)/x,” + 1. Similar inequalities are obtained for x2.

When Step 3 of the branch-and-reduce algorithm is entered initially, the bounds
on the variables are 0 5 XI I 5,0 < 22 < 5 and 0 < x3 (= ~1x2) 5 25. Upon
exit from this step, the variable bounds become 0 5 xi 5 1.5, 0 5 22 < 1.5
and 0 5 23 5 2.25. (For this example, feasibility-based range reduction has the
same effect on bounds as solving 2n linear programs to minimize and maximize
individual variables.) Using the improved bounds, a relaxed problem is constructed
(Step 4). The solution to this relaxed problem is x1 = (0.643, 0.857, O)t and
produces a lower bound of L = L’ = - 1.5 and an upper bound U = -0.949. Using
x1 as the starting point for local minimization (Step 5) with MINOS [43] yields
U = -1.005 and x* = (0.917, 1.062, 0.974)t. As all range constraints have
zero multipliers at x’ , optimality-based range reduction in Step 6 can be applied
using only (6) and (7). After selecting 22 for probing, (6) and (7) improve the
bounds on x2 to 0.004 < x2 5 1.28 1. The results hereafter can be seen in Table III.
Eventually, after three cycles through Steps 4 to 6, the objective function cut results
in 1.125 5 x 1 5 1.121. This means that there are no feasible solutions for which

TA
BL

E
III

.
Ap

pl
ica

tio
n

of
 ra

ng
e

re
du

ct
io

n
to

 th
e

Al
-K

ha
yy

al

an
d

Fa
lk

ex
am

pl
e

[2
].

St
ep

zf

0
0

1
0

2
0

3
0

u Xl
X2

”
X2

”
X3

”
X3

”
L’

xt

d
I

x3

u
x;

4

4

5
0

5
0

25

-c
c

+C
=

5
0

5
0

25

--o
o

+m

5
0

5
0

25

-c
c

$0
0

1.
5

0
I.5

0

2.
25

-c

o
+o

O

4
0

1.
5

0
1.

5
0

2.
25

-1

.5

0.
64

3
0.

85
7

0
-0

.9
49

0.

64
3

0.
85

7
0

5
0

1.
5

0
1.

5
0

2.
25

-1

.5

0.
64

3
0.

85
7

0
-1

.0
05

0.

91
7

1.
06

2
0.

97
4

6
0

1.
42

7
0.

00
4

1.
28

1
0

1.
82

8
-1

.5

0.
64

3
0.

85
7

0
-1

.0
05

0.

91
7

1.
06

2
0.

97
4

4
0

1.
42

7
0.

00
4

1.
28

1
0

1.
82

8
-1

.3
92

1.

09
9

0.
29

7
0.

00
4

-
1.

07
0

I .0
99

0.

29
7

0.
00

4
5

0
1.

42
7

0.
00

4
1.

28
1

0
1.

82
8

-
1.

39
2

1.
09

9
0.

29
7

0.
00

4
-

1.
08

3
1.

16
7

0.
5

0.
58

3
3

6
0.

40
6

1.
29

7
0.

00
4

1.
28

1
0.

00
2

1.
66

2
-

1.
39

2
1.

09
9

0.
29

7
0.

00
4

-
1.

08
3

1.
16

7
0.

5
0.

58
3

3 vl

4
0.

40
6

1.
29

7
0.

00
4

1.
28

1
0.

00
2

1.
66

2
-1

.2
67

1.

09
7

0.
29

0
0.

12
0

-1
.0

83

1.
16

7
0.

5
0.

58
3

z
5

0.
40

6
1.

29
7

0.
00

4
1.

28
1

0.
00

2
1.

66
2

-1
.2

67

1.
09

7
0.

29
0

0.
12

0
-

1.
08

3
1.

16
7

0.
5

0.
58

3
8

6
1.

12
5#

1.

12
1#

0.

35
4

0.
36

3
0.

39
5

0.
40

7
-1

.2
67

1.

09
7

0.
29

0
0.

12
0

-
1.

08
3

1.
16

7
0.

5
0.

58
3

%

#:
 I

nf
ea

si
bi

lit
y

is
de

te
ct

ed
.

3 CT

5:

R .s

z z e iz

A BRANCH-AND-REDUCE APPROACH 123

the current incumbent can be improved. Hence, the algorithm terminates at the root
node with no branching required.

For this example, Table IV compares the algorithm with other approaches. In the
table, Cm, n>, NM, Opt, Nmem an d E, respectively, denote the size of the relaxed
problem (number of constraints and variables), the total number of iterations, the
node where the optimal solution was found, the memory requirements during the
search (maximum number of nodes that had to be stored simultaneously), and the
termination criterion (difference between upper and lower bounds at termination)
used. The entries of the first two rows of Table IV are taken from Sherali and
Alameddine [57] and the CPU times of the first three algorithms are all on an IBM
3090 supercomputer whereas the branch-and-reduce time is on an IBM RW6000
66MHzPower PC.

TABLE IV. Comparative computational results for the Al-Khayyal and Falk example [2].

Method (m,n) Not N,,t nine, CPU sec. E

Al-Khayyal and Falk [2] (4>3) >103 51 20 >55* 0.001
Sherali and Alameddine [57] (23,5) 11 10 7 14* 0.001

Sherali and Tuncbilek [58] (23,5) 1 1 1 0,71* ***

Branch-and-Reduce (4,3) 1 1 1 0,15*x 0

*: Computation was done on an IBM 3090 supercomputer.
**: Computation was done on an IBM RS/6000 66MHz-Power PC.
***: A relative criterion of 1% (i.e., L 1 c’ - 0.01]U]) was used for termination, although
the lower bound reported was accurate to at least 3 decimal digits.

6. Global Optimization of Univariate Polynomial Functions

In this section we specialize the branch-and-reduce algorithm for the following
class of problems:

(POLY) : glob min f(x) = 6 u;xi
i=O

s.t. XL 5 x < x”

where a,, i= 1 ,..., t, are given real numbers.
The following theorem summarizes important properties of monomials. The

proof is immediate.

THEOREM 5. Let f* = a,x’ be a monomialfunction defined over xL 5 x 5 zCi.
fi is convex over [XL., x’] if any of the following conditions holds:
(i) x L zz g.

(ii) xL 2 0 and a, > 0.

124 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

(iii) i = 2k (k = 1) 2,3, . . .) and a; 2 0.
(iv) x” _< 0, i = 2k + 1 (k = 1,2,3, . . .) and ai 5 0.
(v) xL x” 5 0, i = 2k (k = 1,2,3 ,...) anda; 2 0.

In all other cases, fi is concave.

If0 $ (x L, x”), the monomial a;zi is either convex or concave for any integer
i. In this case, once the convex terms are identified, the terms in the objective of
PO LY can be rearranged:

(POLY) : glob min f(x) = c f;(x) + c f;(x) := fcv(x) + fee(x)
iEcv iEcc

s.t. XL 5 x 5 x” (11)

where c’u and cc denote the sets of indices of monomials that are convex and
concave, respectively. Now construction of the convex envelope for the composite
nonconvex function can be easily achieved by underestimating the function fee in
(11) by a linear function:

(R - POLY) : min f(x) = fcv(x> t a + 13x
s.t. XL 5 x 5 x”

where ,D = (f&x’) - fcc(xL))/(xu - xL) and Q = fcc(xL) - @xL.
The Newton-Raphson method will be used for solving R - PO LY because of

its attractive convergence rate. The method can be further enhanced as follows:

THEOREM 6. Let Ri be the current relaxation problem. The following assertions
hold:
(i) Iff”(xL) > 0, then xL is an optimal solution to Ri.

(ii) Iff’(x”) 5 0, then x” is an optimal solution to R;.
Proo$ Follows from convexity off. 0

By making use of the two conditions of Theorem 6 in the lower bounding step,
one can quickly check whether or not an optimal solution of a relaxed problem
is readily available. Even when the conditions do not apply, they provide all the
necessary information for range reduction based on probing.

Now, the distinctive steps of the specialized algorithm can be stated.

ALGORITHM 3. Poly:

Operation Initialization:

if 0 E (xL, x”) then

Create two subproblems from R - PO LY: RI defined over [xL, 0] and

R2 over [0, x”]. Put Rr and R2 in the list ACTIVE.

else

A BRANCH-AND-REDUCE APPROACH 125

Put R1 = R - POLY in ACTIVE.

endif

Set L(O) = -cc and U(O) = +oo.

Go to the main step

Operation Lower Bounding:

if J’(&) 2 0 then

Set zi (the optimal solution of R;) equal to c$.

elseif p(zU) 5 0 then

Set x2 equal to x”.

else

Solve R; using the Newton-Raphson method. Let x2 be the solution.

endif

Set Li = f(X’).

The remaining steps of the algorithm for polynomials follow the description of
the general algorithm of Section 4.

7. Global Optimization of Linear Multiplicative Programming Problems

This section addresses the development of a specialized branch-and-reduce algo-
rithm for the following class of problems:

(LMP) : globmin f(x) = fi f;(x) = fi (cix + cio)
i=l i=l

s.t. Ax 5 b

c~x+c;o~O (i= l,...,p)

where x E F, b E 9?Iz”, ci E ?Iz” and C;O E !J? (i = 1, . . . , p) and A E Wx n.
Linear multiplicative programming problems have applications in microeco-

nomics, VLSI chip design, bond portfolio optimization and multicriteria optimiza-
tion problems (Kuno and Konno [33]). They are also closely related to other classes
of global optimization problems. If p = 2, for example, LMP can be transformed
into bilinear programming and a class of quadratic programming problems (Parda-
10s [47]). The problem may possess several local minima (Konno and Kuno [31])
and its complexity is still open even for p = 2 (Pardalos [47]), even though more
general LMPs are known to be M-hard (Konno et al. [32]). Without loss of
generality, we will assume that cfx + cio > 0 (i = 1, . . . , p) over the feasible

126 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

set (If any one of the linear functions can assume the value of 0, then a globally
optimal solution of LMP can be trivially found by individually minimizing the
linear functions in the objective subject to the constraint set.)

The following transformation facilitates the development of the relaxation:

(LMP - T) : globmin ln(f(t)) = 2 ln(t;)
i=l

s.t. Ax 5 b

c;x+c;()=t; (i= I,...$)

ti >0 (ix l,...,p)

THEOREM 7. LMP and LMP - T are equivalentproblems.
ProoJ: Follows directly from the monotonicity of the logarithmic function. q

As the objective in LMP - T is concave, the computation of lower bounds is
achieved through the solution of linear programming subproblems:

(R - LMP - T) : globmin fct) = k(Qi + Pit;)
i=l

s.t. Ax 5 b
c;x + cg) = ti (i = I,...$)

ti > 0 (i= l,...,p)

where ,& = (ln(ty) - ln(tF))/(tu - tf) and CX~ = In(@) - /3& (i = l,..., p).
Note that solving R - LMP - T requires lower and upper bounds for each

product variable ti (i = l,..., p). To obtain these bounds, the problem is preprocessed
at the initialization phase of the algorithm. First, each product variable is minimized
individually subject to the original problem constraints to obtain its lower bound.
This computation also provides upper bounds through function evaluations at the
resulting feasible points. Let U denote the best of these bounds. Subsequently,
the objective function cut f(x) = ny=‘=, ti < U yields the relationships t; 2
U/I-&# tj (i = 1)“‘) p) which, in turn, provide the required upper bounds:

(12)

Note that (12) can be used in the pre- and post-processing steps of the algorithm
at any node of the search tree.

The following are the problem-specific steps of the specialized branch-and-
reduce algorithm for LMPs:

ABRANCH-AND-REDUCEAPPROACH 127

ALGORITHM 4. Linear Multiplicative:

Operation ZnitiffZizutiun:

Set L(O) = --oo.

Individually minimize ti (i = 1, p) subject to the constraint set. Let x2
(i = l,..., p) be the solution vectors and tf (i = 1,. . . ,p) the corresponding
solution values.

Set U(O) = mini=r,...,P{f(xZ)}.

Calculate ty (i = 1,. . . ,p) from (12).

Put R1 = R - LMP - 2’ in the list ACTIVE of active subproblems.

The remaining steps of the algorithm for LMPs follow the description of the
general algorithm of Section 4.

Remark 4. In order to obtain an e-optimal solution of LMP, Linear Multi-
plicative must use exp(Li) 1 exp(U(“)) - E as the criterion for deleting inferior
nodes.

8. Implementation and Computational Experiments

The computer code BARON (Branch-And-Reduce Optimization Navigator) has
been developed to implement the proposed algorithm. BARON is a modular, all-
purpose global optimization software that executes the branch-and-reduce global
optimization strategy by navigating its way through user-provided subroutines. The
user provides only problem-specific subroutines for computing the relaxations and
for local minimization. A GAMS [7] and a FORTRAN version of BARON have
been developed. Global optimization problems were collected from the literature
and others were randomly generated in order to test BARON and demonstrate the
wide applicability of range reduction and the branch-and-reduce algorithm.

8.1. ENGINEERING DESIGN PROBLEMS AND STANDARD GLOBAL OPTIMIZATION
TESTPROBLEMS

A set of 27 engineering design problems and global optimization tests problems
were solved first as seen in Table V. These problems include engineering design
problems (Examples 2-5, 12-l@, a pooling problem (Example 7), early global
optimization test problems (Examples 1, 22 and 23) and some others. Table V
provides for each problem the source and problem size in terms of numbers of
constraints (m), continuous (n,) and integer variables (ni). Detailed models, local
and global solutions of the first 21 problems are reported in Ryoo and Sahinidis
[541.

TA
BL

E
V.

 C
om

pu
ta

tio
na

l
re

su
lts

 w
ith

en

gin
ee

rin
g

de
sig

n
pr

ob
le

m
s

an
d

glo
ba

l
op

tim
iza

tio
n

te
st

 p
ro

bl
em

s.

Br
an

ch
-a

nd
-B

ou
nd

Br

an
ch

-a
nd

-R
ed

uc
e

Pr
ob

lem

siz
e

BB

BR
I

(w
/o

pr
ob

ing
)

BR
2

(w
/

pr
ob

ing
)

EL

So
ur

ce

m

n,

n,

NM

N
,,t

N

,,,

CP
U

N
to

t
N

o,
t

m
em

N

CP
U

N
to

t
N

Nm
m

op

t
CP

U
No

.
se

c.

se
c.

se

c.

1
[5

51

1
2

13

12

12

1.
10

1

1
1

0.
35

1

1
1

0.
50

2
[6

1]

3
3

11

9
3

20
.9

0
1

1
I

0.
15

1

1
1

0.
13

3
[5

]
7

IO

*
*

*
*

5
1

3
12

.2
5

1
1

1
13

.3
3

4
[6

1]

1
3

*
*

*
*

I
1

I
0.

21

1
1

1
0.

22

5
[3

6]

3
5

*
*

*
*

49

48

7
4.

54

3
1

2
2.

22

6
13

61

3
3

1
1

1
0.

23

1
1

1
0.

20

I
1

1
1.

14

7
[2

5]

7
10

7

2
2

1.
94

3

1
2

1.
56

1

1
1

0.
63

8
[6

2]

2
2

1
I

1
0.

26

1
1

1
0.

26

1
1

1
0.

38

9
16

21

1
2

7
1

4
0.

82

3
1

2
0.

53

3
1

2
0.

93

10

[5
9]

1

2
1

1
1

0.
16

1

1
1

0.
19

1

1
I

0.
18

11

[7
2]

2

3
*

*
*

*
I

1
1

0.
65

1

1
1

0.
67

12

[6
0]

3

4
3

1
2

0.
31

1

1
1

0.
13

1

1
1

0.
13

13

[3

01

2
1

1
5

2
2

0.
48

1

1
1

0.
35

1

I
1

0.
35

14

[7
6]

9

3
4

7
7

6
1.

65

7
7

6
0.

99

7
7

6
1.

79

15

[3
0]

6

2
3

*
*

*
*

1
1

1
0.

15

1
1

1
0.

17

16

11
71

9

12

*
*

*
*

1
1

1
3.

46

1
I

1
3.

43

17

[3
51

1

2
*

*
*

*
3

2
2

0.
54

3

2
2

0.
75

18

[7
11

4

2
1

I
1

0.
24

1

1
1

0.
22

1

1
1

0.
22

19

13

71

2
2

14
9

16

15

6.
20

3

1
2

0.
42

3

1
2

0.
45

20

[3
7]

5

6
*

*
*

*
12

9
10

8
66

14

.6
2

12
9

10
8

66

34
.8

 1

21

16
01

6

6
7

2
4

0.
57

3

1
2

0.
47

1

I
1

0.
44

22

[2
9]

5

2
9

1
4

0.
44

1

1
1

0.
18

1

1
1

0.
26

23

El

2
2

13

1
5

0.
78

3

2
2

0.
56

1

1
1

0.
77

24

[3

1]

8
4

5
1

3
0.

50

I
1

1
0.

46

1
1

1
0.

49

25

[M
l

4
2

1
I

1
0.

08

1
1

1
0.

09

1
1

1
0.

09

26

[1
6]

4

2
17

9

9
2.

89

5
I

3
0.

77

5
1

3
0.

98

27

[8
]

6
5

*
*

*
*

I
I

1
0.

44

1
1

1
0.

66

A BRANCH-AND-REDUCE APPROACH 129

The FORTRAN version of BARON was used to solve these problems and the
tests were run on a SUN SPARC Station 2. All the relaxation subproblems and
NLP problems were solved using MINOS 5.4 [43]. Three different strategies were
tested: BB, BRl and BR2. BB is a standard branch-and-bound strategy and does
not involve the use of any range reduction techniques. BRl features the optimality-
based range reduction tools of Table I, and BR2 makes use of all range reduction
mechanisms of Tables I and II. An absolute optimality tolerance of E = lop6 was
used throughout the experiments: at any iteration k, all subproblems (&) with
Li > U(“) - E were deleted. For the results presented in Table V, Ntot, Nopt and
N mem denote the total number of iterations, the node in which the optimal solution
is found, and the maximum number of nodes stored in memory during the search,
respectively. A * in this table is used to indicate the examples that did not terminate
within 1200 CPU seconds or N,,,= 1000 nodes. Finally, n, and ni denote the
number of continuous and integer variables of the problem, respectively.

As seen in Table V, standard branch-and-bound (BB) did not converge for
many of the problems despite their small size. On the other hand, the use of
range reduction made possible the solution of all problems within the prespecified
time and memory limits. The use of probing (BR2) further reduces the memory
requirements of the simpler algorithm (BRl) at the expense of somewhat higher
CPU times for some of the problems. Ryoo and Sahinidis [54] solved the first 21
of these test problems using the GAMS implementation of an earlier version of the
algorithm. The results presented in Table V for these 21 problems improve those in
[54] due to the use of tighter lower bounds, additional range reduction inequalities
and an improved implementation.

TABLE VI. Comparative computational results for unconstrained univariate polynomial functions

Branch-and-Reduce Interval Arithmetic Method [24]
Nested form Centered form

Ex. Source Order Ntot Nopt ,vm,, CPU LYriot CPU nitot CPU
No. (t) sec.* sec.** sec.**

1 [75] 6 27 22 5 0.06 21 0.38 20 1.12
2 [42] 50 17 16 5 0.06 44 6.30 34 72.96
3 [74] 5 27 24 6 0.06 19 0.30 18 0.78
4 [ll] 4 11 0 3 0.04 32 0.40 31 1.16
5 [ll] 6 7 0 4 0.01 21 0.34 23 1.22
6 [19] 6 31 10 7 0.06 37 0.70 37 2.04
7 [lo] 4 9 9 3 0.01 16 0.22 16 0.50

*: IBM RS/6000 66MHz-Power PC.
**: SUN 3/50-12 workstation.

130 HONGS.RYOOANDNIKOLAOSV.SAHINIDIS

8.2. POLYNOMIAL PROGRAMS

Comparative computational results for unconstrained univariate polynomial func-
tions are provided in Table VI. The FORTRAN version of BARON was used in
this computation and the tests were run on an IBM RS/6000 66MHz-Power PC
with an absolute optimality tolerance of E = 10p7. No local minimization was
used and upper bounding was based on function evaluations. Hansen et al. [24]
solved the same set of problems in the same order. The results with two different
interval arithmetic methods from [24] are also provided in Table VI for compari-
son. Although the CPU times of all approaches are small for most problems, [24]
reports much larger CPU times for Example 2 than for any of the other problems.
Example 2 involves the largest number (50) of monomial functions. The branch-
and-reduce algorithm seems to be insensitive to the order of the polynomial and
takes less than 0.1 set to solve any of these problems. This is due to a very efficient
implementation of the lower and upper bounding procedures. The performance of
the proposed algorithm seems to depend on the difference between the relaxation
value at the root node and the optimal solution of the nonconvex problem. The
initial lower bounds and global optima for these problems are shown in Table VII.
Examples 1 and 6 present the largest gap between the two bounds and require the
largest number of iterations of the algorithm.

TABLE VII. Gap between initial lower bounds and global optima for
polynomial examples.

Example Number Initial Lower Bound (L’) Global Optimum

1 -138,468.40 -29,763.23
2 -22,933.59 -663.50
3 - 1764.29 -443.71
4 - 101.82 0
5 -6.34 0
6 - 1546.79 7
7 -9.14 -7.50

8.3. LINEARMULTIPLICATIVEPROGRAMMINGPROBLEMS

As there are not many LMP test problems in the literature, we generated random
problems to test the algorithm. These problems varied in sizes from (m, n)=(50,50)
to (200,200) with p ranging from 2 to 5. The objective cost coefficients were
generated in the range [0, lo]. Finally, the elements of A and b of the constraint
set Az 5 b were generated from [- 100, 0] to ensure a finite optimal solution.
Using different seeds, ten random instances were generated and solved by Linear
Multiplicative of Section 7 on an IBM RS/6000 66MHz-Power PC. The FORTRAN
version of BARON was used with an absolute optimality tolerance of E = 10W6.

A BRANCH-AND-REDUCE APPROACH 131

Neither local minimization nor probing were used for these problems and the linear
programming subproblems were solved using IBM’s OSL (Release 2).

TABLE VIII. Computational results for LMPs with p = 2.

Problem Size Tree Size CPU seconds

50

100

50

100

150

100

150

200

150

200

50

50

100

100

100

150

150

150

200

200

9.6 2.8 4.0 0.7 0.2 0.2 0.1 0.0
3 1 3 0.4 0.1 0.1 0.0 0.0
15 9 5 1.0 0.3 0.5 0.2 0.0

13.8 4.7 4.7 1.8 0.4 0.8 0.5 0.0
11 1 4 1.4 0.3 0.5 0.2 0.0
21 13 6 2.5 0.5 1.1 1.0 0.0
1.4 2.8 3.1 1.0 0.4 0.3 0.2 0.0

1 1 1 0.5 0.2 0.0 0.0 0.0
21 15 6 1.9 0.6 1.0 0.5 0.0
6.6 2.7 3.2 2.0 0.7 0.5 0.5 0.0

1 0 1 0.8 0.4 0.0 0.0 0.0
11 7 5 2.9 1.8 1.3 1.3 0.0

10.6 4.2 3.8 4.0 1.1 1.7 0.9 0.0
1 1 1 1.5 0.6 0.1 0.0 0.0

21 15 6 7.3 2.6 5.0 2.1 0.0
6.8 3.2 3.2 2.8 1.3 0.8 0.5 0.0

1 1 1 1.9 0.6 0.1 0.0 0.0
21 13 7 6.1 1.9 2.5 1.5 0.0
8.0 2.8 3.3 6.0 2.7 1.9 0.9 0.0

1 1 I 2.7 2.0 0.2 0.1 0.0
21 9 7 9.7 5.1 4.8 2.4 0.0
8.6 4.1 3.4 9.1 3.5 3.5 1.5 0.0

1 1 1 5.1 1.4 1.3 0.1 0.0
19 12 7 12.9 5.2 5.7 4.8 0.0
8.6 4.1 3.3 10.6 4.9 3.9 1.2 0.0

1 1 1 1.9 1.1 0.1 0.1 0.0
19 11 6 19.2 10.0 8.8 2.8 0.0
8.6 4.0 3.4 15.7 8.7 4.4 1.8 0.0

1 1 1 8.3 3.5 0.4 0.1 0.0
27 15 8 25.6 14.2 11.2 6.7 0.0

Tables VIII and IX provide computational results with p = 2 and p = 5. Results
with p = 3 and p = 4 are similar (see Ryoo [53]). In these tables, Ttot, Ttntt, T,,l,

Tf eas, and Topt denote total CPU time spent, time for the initialization, time spent
on solving relaxed subproblems, time spent on feasibility-based range reduction
and time spent on optimality-based range reduction, respectively. For each problem
size, three rows of results are presented and correspond to the average, the best
and the worst case performance of the algorithm over the 10 different random runs

132 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

TABLE IX. Computational results for LMPs with p = 5.

Problem Size Tree Size CPU seconds

50

100

50

100

150

100

150

200

1.50

200

50

50

100

100

100

150

150

150

200

200

327.4 140.7 79.8 19.5 0.5 13.2 5.4 0.0
187 7 49 12.6 0.4 5.7 2.4 0.0
561 321 117 31.1 0.6 21.8 8.5 0.1

426.0 166.3 100.6 54.6 0.9 43.2 10.0 0.0

16.5 1 59 21.3 0.7 16.1 3.9 0.0

529 380 135 74.6 1.2 62.1 15.8 0.1

292.2 64.6 79.8 28.3 1.2 18.9 7.8 0.1

83 1 32 6.9 0.9 3.4 2.5 0.0

519 299 130 52.4 1.7 36.8 14.0 0.1

419.2 169.3 97.5 84.1 2.0 62.0 19.2 0.1

123 1 40 23.3 1.7 14.3 6.9 0.0

841 555 152 161.1 2.5 124.9 36.7 0.1

589.8 374.0 130.9 198.1 3.7 153.4 40.0 0.1

371 235 63 100.6 2.5 68.3 24.9 0.0

951 907 225 300.5 4.7 231.5 63.0 0.2

480.3 261.3 108.2 140.7 3.5 102.8 33.5 0.1

113 3 33 33.9 2.1 13.8 12.3 0.0

1311 831 214 419.6 4.7 298.0 70.6 0.3

529.5 302.0 115.8 256.1 6.4 192.2 56.2 0.1

203 87 37 104.5 4.1 45.8 31.1 0.0

1071 538 230 457.3 9.6 378.7 97.7 0.3

603.7 403.5 143.7 465.1 9.3 374.8 79.4 0.1

257 29 51 168.0 5.8 124.3 34.8 0.1

1237 796 255 1191.5 12.9 974.7 129.4 0.3

542.8 299.6 137.6 345.6 12.0 263.9 68.1 0.2

287 1.0 86 195.2 7.6 143.3 36.7 0.1

919 549 253 687.7 16.3 566.8 107.8 0.3

677.7 457.5 147.6 650.4 17.3 515.3 115.5 0.2

437 131 104 333.4 12.8 242.1 71.1 0.1

1135 905 219 1273.8 22.0 1037.1 176.7 0.4

for each performance measure. It can be seen through these tables that optimality-
based range reduction tests consume but a very small fraction of the total CPU
time whereas a considerable amount of time is spent at the initialization phase for
preprocessing of the bounds. For a constant number of products in the objective,
Tables VIII and IX indicate a weak dependence of the problem complexity on
the total number of variables. Figure 1 presents average results over all problem
sizes (m, n) as a function of the number of products (p). For the problems solved,
there seems to be a low-order polynomial relationship between CPU time and
the number of products. The generated problems were very difficult as denoted

A BRANCH-AND-REDUCE APPROACH 133

by the gap between the initial bounding LP and the optimal solution. This gap
averaged from 8 to 46 % in the examples solved as shown in Table X. The initial
LP bound in this table was computed after the initialization phase which includes
some feasibility-based range reduction tests.

2 3 4 5

Number of products

Fig. 1. CPU seconds versus the number of products for IMPS.

TABLE X. Gap between global optimum and ini-
tial lower bound for LMPs with various problem
sizes.

Gap = (f - L’)/Lr x 100
cm, n) p=2 p=3 p=4 p=5

(5OSO) 9 23 45 53
(100,50) 14 27 46 56
(50,100) 11 23 32 47
(100,100) 8 24 35 55
(150,100) 12 30 40 58
(100,150) 6 17 28 34
(150,150) 3 19 29 37
(200,150) 5 22 32 38
(150,200) 3 18 28 37
(200,200) 4 18 28 40

Average 8 22 34 46

8.4. PRELIMINARY RESULTS WITH MINLPs AND SEPARABLE QPs -

Some preliminary computational studies on a SUN SPARC Station 2 with mixed-
integer nonlinear programs (MINLPs) and quadratic programs (QPs) are reported in
Tables XI and XII, respectively. In addition to the MINLP Examples 13-I 5 of Table
V, Examples 14 in Table XI were solved. The number of integer variables (n,) in
the problems ranged from 3 to 25. The concave quadratic programming problems
(Examples l-5 of Table XII) are from Section 2.7 of Floudas and Pardalos [181. The

134 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

problems of Tables XI and XII were solved with an absolute termination criterion
of lo@ using the GAMS version of BARON. No probing was used for optimality-
based range reduction. The results of this subsection are only preliminary in the
sense that pre-processing and post-processing are not extensive and do not exploit
the special properties of the problems. These results are presented to illustrate the
versatility of the proposed algorithm. Nevertheless, comparative computational
results shown in Table XIII for the QPs indicate that the algorithm is competitive
to the Reformulation-Linearization Technique (Sherali and Tuncbilek [58]). The
preliminary implementation of the branch-and-reduce algorithm takes a larger
number of iterations to converge. Yet, the relaxations used are simpler to solve and
thus the resulting CPU times are competitive.

TABLE XI. Preliminary computational results for MINLPs.

Ex. No. Source m n, n? ivfOt W,,, N,,,,, CPU sec.

1 [12] 6 3 3 3 2 2 2
2 [13] 14 6 5 7 6 4 5
3 [20] 23 9 8 9 8 8 10
4 [l] 5 5 25 83 81 14 280

TABLE XII. Preliminary computational results for QPs.

Ex. No. Source m n Ntot ATopt ,vm,, CPU sec.

1 [I81 10 20 145 1 38 20
2 1181 10 20 145 1 38 16
3 [I81 10 20 145 1 38 15
4 [I81 10 20 145 1 38 16
5 [I81 10 20 325 63 90 53

TABLE XIII. Comparative computational results for QPs.

Reformulation-Linearization [58] Branch-and-Reduce
Ex. Optimality LD-RLT-NLP LD-RLT-NLP(SC)
No. Tolerance CPU sec. No. of CPU sec. No. of CPU sec. No. of

% IBM 3090 Iterations IBM 3090 Iterations SUN Spare 2 Iterations
1 5 8.13 7 3.29 3 5.34 35
2 5 2.54 1 2.61 1 1.57 13
3 5 13.26 11 2.55 1 3.86 35
4 5 5.04 5 2.61 1 1.45 13
5 5 27.00 25 15.94 11 5.05 69

A BRANCH-AND-REDUCE APPROACH 135

9. Conclusions

Range reduction techniques were presented in this paper as a means of performance
improvement in global optimization algorithms. These techniques are based on
optimality and feasibility criteria and were incorporated in the branch-and-bound
framework to demonstrate their use. The philosophy of the resulting branch-and-
reduce algorithm is to improve the lower and the upper bounds on the value of the
global optimum by reducing the ranges of the continuous variables. The versatility
and the efficiency of the algorithm were demonstrated by applying it to engineering
design problems, standard global optimization test problems, univariate polynomi-
al functions, mixed-integer nonlinear problems, concave quadratic programming
problems and linear multiplicative programming problems.

The proposed algorithm was implemented in the global optimization software
BARON. An experimental FORTRAN version of the code can be obtained by
anonymousftpfromaristotle.me.uiuc.edu.

Acknowledgements

Partial financial support from the University of Illinois, from the EXXON Edu-
cation Foundation and from the National Science Foundation under grant DMII
94- 14615 is gratefully acknowledged. The authors are also thankful to Professor
Panos Pardalos for helpful comments.

References

1. Albers, S. and K. Brockhoff (1977), “A Procedure for New Product Positioning in an Attribute
Space,” European Journal of Operational Research, 1,230-238.

2. Al-Khayyal, F. and J. E. Falk (1983), “Jointly Constrained Biconvex Programming,” Mathematics
of Operations Research, S(2), 273-286.

3. Anagnostou, G., E. M. Ronquist, and A. T. Patera (1991), “A Computational Procedure for
Part Design,” in J. P Mesirov (ed.), Very Large Scale Computation in the 21st Century, SIAM.
Philadelphia.

4. Balakrishnan. V. and S. Boyd (1992), Global Optimization in Control System Analysis and
Design, in Leondes, C. T. (ed.), Control and Dynamic Systems: Advances in Theory and Appli-
cations, vol. 53, Academic Press, New York.

5. Bracken, J. and G. P McCormick (1968), Selected Applications of Nonlinear Programming,
Wiley, New York.

6. Brayton, R. K., G. D. Hachtel, and A. L. Sangiovanni-Vincentelli (1981), “A Survey of Opti-
mization Techniques for Integrated-Circuit Design,” Proceedings of the IEEE, 69, 1334-1362.

7. Brooke, A., D. Kendrick, and A. Meeraus (1988), GAMS - A User’s Guide, The Scientific Press,
Redwood City.

8. Colville, A. R. (1968), “A Comparative Study of Nonlinear Programming Codes,” IBM Scientific
Report 320-2940, New York.

9. Danninger, G. (1992), “Role of Copositivity in Optimality Criteria for Nonconvex Optimization
Problems,” Journal of Optimization Theory and Applications, 75(3), 535-538.

10. Dixon, L. C. W. (1990), “On Finding the Global Minimum of a Function of One Variable,” SIAM
National Meeting , Chicago, IL.

11. Dixon, L. C. W. and G. P. Szeg@ (1975), Towards Global Optimization, North Holland, Amster-
dam.

136 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D&n, M. A. (1984), “A Mixed-integer Nonlinear Programming Approach for the System-
atic Synthesis of Engineering Systems,” Ph.D. Thesis, Department of Chemical Engineering,
Carnegie Mellon University.
Dur&n, M. A. and I. E. Grossmann (1986), “A Mixed-integer Nonlinear Programming Algorithm
for Process Systems Synthesis,” American Institute of Chemical Engineers Journal, 32,592-606.
Dur&n, M. A. and I. E. Grossmann (1986), “An Outer-Approximation Algorithm for a Class of
Mixed-Integer Nonlinear Programs,” Mathematical Programming, 36, 307-339.
Falk, J. E. (1973), “Conditions for Global Optimality in Nonlinear Programming,” Operations
Research, 21,337-340.
Falk, J. E. and R. M. Soland (1969), “An Algorithm for Separable Nonconvex Programming
Problems,” Management Science, l&550-569.
Floudas, C. A. and A. R. Ciric (1989), “Strategies for Overcoming Uncertainties in Heat Exchang-
er Network Synthesis,” Computers & Chemical Engineering, 13, 1133-l 152.
Floudas, C. A. and P M. Pardalos (1990), A Collection of Test Problems for Constrained Global
Optimization Algorithms, Springer-Verlag, Berlin.
Goldstein, A. A. and J. F. Price (1971), “On Descent from Local Minima,” Mathematics of
Computation, 25, 569-574.
Grossmann, I. E. (1985), “Mixed-integer Programming Approach for the Synthesis of Integrated
Process Flow-sheets,” Computers & Chemical Engineering, 9,463-482.
Haftka, R. T. and Gurdal, Z. (1992), Elements of Structural Optimization, Kluwer Academic
Publishers, Dordrecht.
Hamed, A. S. E. and G. I? McCormick (1993), ‘Calculation of Bounds on Variables Satisfying
Nonlinear Inequality Constraints,” Journal of Global Optimization, 3(l), 25-47.
Hansen, P., B. Jaumard, and S.-H. Lu (1991), “An Analytical Approach to Global Optimization,”
Mathematical Programming, 52(2), 227-254.
Hansen, P., B. Jaumard, and J. Xiong (1993), “Decomposition and Interval Arithmetic Applied
to Global Minimization of Polynomial and Rational Functions,” Journal of Global Optimization,
3(4), 421-437.

25. Haverly, C. A. (1978), “Studies of the Behaviour of Recursion for the Pooling Problem,” SZGMAP
Bull., 2.5, 19.

26. Hillestad, R. J. and S. E. Jacobsen (1980), “Reverse Convex Programming,” Applied Mathematics
and Optimization, 6, 63-78.

27. Hiriart-Urruty, J.-B. (1986), “When Is a Point 2 satisfying Of(z) = 0 a global optimum off ?,”
American Mathematics Monthly, 93, 556-558.

28. Horst, R. and H. Tuy (1993) Global Optimization: Deterministic Approaches, Springer-Verlag.
2nd ed., Berlin.

29. Kalantari, B. and J. B. Rosen (1987), “An Algorithm for Global Minimization of Linearly
Constrained Convex Quadratic Functions,” Mathematics of Operations Research, 12(3), 544-
561.

30.

31.

32.

33.

34.

35.

36.

Kocis, G. R. and I. E. Grossmann (1988), “Global Optimization of Nonconvex MINLP Problems
in Process Synthesis,” Industrial and Engineering Chemistry Research, 27(8), 1407-1421.
Konno, H. and T. Kuno (1990). “Generalized Linear Multiplicative and Fractional Programming,”
Annals of Operations Research, 25, 147-162.
Konno, H., T. Kuno, and Y. Yajima (1992), “Parametric Simplex Algorithms for a Class of
NP-Complete Problems Whose Average Number of Steps is Polynomial,” Computational Opti-
mization and Applications, 1,227-239.
Kuno, T. and H. Konno (1991), “A Parametric Successive Underestimation Method for Convex
Multiplicative Programming Problems,” Journal of Global Optimization, l(3), 267-285.
Lamar, B. W. (1993), “An Improved Branch and Bound Algorithm for Minimum Concave Cost
Network Flow Problems,” Journal of Global Optimization, 3(3), 261-287.
Liebman, J., N. Khachaturian, and V. Chanaratna (1981), “Discrete Structural Optimization,”
Journal of Structural Division, ASCE, 107, no. ST1 1, Proceedings paper 16643 (Nov.), 2177-
2197.
Liebman, J., L. Lasdon, L. Schrage, and A. Waren (1986), Modeling and Optimization with
GINO, The Scientific Press, Palo Alto, CA.

A BRANCH-AND-REDUCE APPROACH 137

37. Manousiouthakis, M. and D. Sourlas (1992), “A Global Optimization Approach to Rationally
Constrained Rational Programming,” Chemical Engineering Communications, 115, 127-147.

38. McCormick, G. I? (1972), ‘Converting General Nonlinear Programming Problems to Separable
Nonlinear Programming Problems,” Technical Report Serial T-267, The George Washington
University, Washington, D.C.

39. McCormick, G. P. (1976), “Computability of Global Solutions to Factorable Nonconvex Pro-
grams: Part I - Convex Underestimating Problems,” Mathematical Programming, 10, 147-17.5.

40. McCormick,G. P. (1983), Nonlinear Programming. Theory, Algorithms, andApplications, Wiley
Interscience, New York.

41. Minoux, M. (1986), Mathematical Programming. Theory and Algorithms. Wiley, New York.
42. Moore, R. (1966), Znterval Analysis, Prentice Hall, Englewood Cliffs, New Jersey.
43. Murtagh, B. A. and M. A. Saunders (1986), MINOS5.0 User’s Guide, Technical Report SOL 83-

20, Systems Optimization Laboratory, Department of Operations Research, Stanford University,
CA.

44. Murty, K. G. and S. N. Kabadi (1987) “Some NP-Complete Problems inQuadratic and Nonlinear
Programming,” Mathematical Programming, 39, 117-129.

45. Neumaier, A. (1992), “An Optimal Criterion for Global Quadratic Optimization,” Journal of
Global Optimization, 2(2), 201-208.

46. Papalambros, P Y. and D. J. Wilde (1988), Principles of Optimal Design, Cambridge University
Press.

47. Pardalos, P. M. (1990). “Polynomial Time Algorithms for Some Classes of Constrained Quadratic
Problems,” Optimization, 21(6), 843-853.

48. Pardalos, P M. and R. Horst (1994), Handbook of Global Optimization, Kluwer Academic
Publishers, Norwell (Massachusetts).

49. Pardalos, P M. and G. Schnitger (1988), “Checking local optimality in constrained quadratic
programming is NP-hard,” Operations Research Letters, 7,33-35.

50. Pardalos, P M., D. Shalloway, and G. Xue (1994), “Optimization Methods for Computing Global
Minima of Nonconvex Potential Energy Functions,” Journal of Global Optimization, 4(2), 117-
133.

51. Phillips, A. T. and J. B. Rosen (1990), “Guaranteed c-Approximate Solution for Indefinite
Quadratic Global Minimization,” Naval Research Logistics, 37,499-5 14.

52. Rozvany, G. I. N. (1989), Structural Design via Optimality Criteria, Kluwer Academic Publish-
ers, Dordrecht.

53. Ryoo, H. S. (1994), “Range Reduction as a Means of Performance Improvement in Global Opti-
mization: A Branch-and-Reduce Global Optimization Algorithm,” Master’s Thesis, University
of Illinois at Urbana-Champaign, IL.

54. Ryoo, H. S. and N. V. Sahinidis (1995), “Global Optimization of Nonconvex NLPs and MINLPs
with Applications in Process Design,” Computers & Chemicnl Engineering, 19(5), 551-566.

55. Sahinidis, N. V. and I. E. Grossmann (1991), “Convergence Properties of Generalized Benders
Decomposition,” Computers & Chemical Engineering, 15(7), 48 l-49 1.

56. Schoen, F. (1991), ‘Stochastic Techniques for Global Optimization: A Survey of Recent
Advances,” Journal of Global Optimization, l(3), 207-228.

57. Sherali H. D. and A. Alameddine (1992), “A new Reformulation-Linearization Technique for
Bilinear Programming Problems,” Journal of Global Optimization, 2(4), 379-410.

58. Sherali H. D. and C. H. Tuncbilek (1994), ‘Tight Reformulation-Linearization Technique Rep-
resentations for Solving Nonconvex Quadratic Programming Problems,” Technical Report, Vir-
ginia Polytechnic Institute and State University, Blacksburg, Virginia.

59. Soland, R. M. (1971), “An Algorithm for Separable Nonconvex Programming Problems II:
Nonconvex Constraints,” Management Science, 17(1 l), 759-773.

60. Stephanopoulos, G. and A. W. Westerberg (1975), ‘The Use of Hestenes’ Method of Multipliers
to Resolve Dual Gaps in Engineering System Optimization,” Journal of Optimization Theory
and Applications, E(3), 285-309.

61. Stoecker, W.F. (1971), Design of Thermal Systems, McGraw-Hill Book Co., New York.
62. Swaney, R. E. (1990), “Global Solution of Algebraic Nonlinear Programs,” AIChE Annual

Meeting, Chicago, IL.

138 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS

63. Thakur, L. S. (1990), “Domain Contraction in Nonlinear Programming: Minimizing a Quadratic
Concave Function Over a Polyhedron,” Mathematics of Operations Research, 16(2), 390-407.

64. Thoai, N. V. (1991), “A Global Optimization Approach for Solving the Convex Multiplicative
Programming Problem,” Journal of Global Optimization, l(4), 341-357.

65. Tom, A., and A. Zilinskas (1989), Global Optimization, Lecture Notes in Computer Science,
350, Springer-Verlag, Berlin.

66. Tuy, H. (1964), “Concave Programming Under Linear Constraints,” Doklady Akademic Nauk,
159,32-35. Translated Soviet Mathematics, 5, 1437-1440.

67. Tuy, H. (1987), “Convex Programs with an additional reverse convex constraint,” Journal of

Optimization Theory and Applications, 52,463-486.
68. Tuy, H. (1991), “Effect of the Subdivision Strategy on Convergence and Efficiency of Some

Global Optimization Algorithms,” Journal of Global Optimization, l(l), 23-36.
69. Tuy, H. and R. Horst (1988), “Convergence and Restart in Branch-and-Bound Algorithms for

Global Optimization. Application to Concave Minimization and D.C. Optimization Problems,”
Mathematical Programming, 41(2),161-183.

70. Tuy, H., V. Khatchaturov, and S. Utkin (1987) “A Class of Exhaustive Cone Splitting Procedures
in Conical Algorithms for Concave Minimization,” Optimization, M(6), 791-807.

71. Visweswaran, V. and C. A. Floudas (1990), “A Global Optimization Algorithm (GOP) for
Certain Classes of Nonconvex NLPs - II. Application of Theory and Test Problems,” Computers
& Chemical Engineering, 14(2), 1419-1434.

72. Westerberg, A. W. and J. V. Shah (1978), “Assuring a Global Optimum by the Use of an Upper
Bound on the Lower (Dual) Bound,” Computers & Chemical Engineering, 2,83-92.

73. Wilde, D. J. (1978), Globally Optimal Design, J. Wiley & Sons, New York.
74. Wilkinson, J. H. (1963), Rounding Errors in Algebraic Processes, Prentice Hall, Englewood

Cliffs, New Jersey.
75. Wingo, D. R. (1985), “Globally Minimizing Polynomials without Evaluating Derivatives,” Znter-

national Journal of Computer Mathematics, 17,287-294.
76. Yuan, X., S. Zhang, L. Pibouleau, and S. Domenech (1988), “Une methode

d’optimisation non lineaire en variables mixtes pour la conception de procedes,” Recherche
Ope’rataionnelle/Operations Research, 22(4), 33 l-346.

