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Abstract. This paper presents valid inequalities and range contraction techniques that can be used to 
reduce the size of the search space of global optimization problems. To demonstrate the algorithmic 
usefulness of these techniques, we incorporate them within the branch-and-bound framework. This 
results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm 
components and theoretical properties are provided. Specialized algorithms for polynomial and 
multiplicative programs are developed. Extensive computational results are presented for engineering 
design problems, standard global optimization test problems, univariate polynomial programs, linear 
multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the 
problems solved, the computer implementation of the proposed algorithm provides very accurate 
solutions in modest computational time. 
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1. Introduction 

The problem considered in this paper is: 

(P) : glob min f(2) 

s.t. s(x) I: 0 
XEX 

where f : X + %, g : X + F’+, and X c Fp. 
It will be assumed that a solution exists. We are interested in finding the solution 

and in proving its global optimality. Global optimization problems are AU’-hard 
problems. Even proving that a solution is not a local minimizer for certain problems 
is NP-complete (e.g., Murty and Kabadi [44], Pardalos and Schnitger [49]). In the 
absence of convexity, traditional (local) nonlinear programming methods may fail 
to locate the global optimum of P. Recently, however, there has been a growing 
interest in global optimization problems as they have numerous applications in 
various fields: structural and shape optimization (Rozvany [52], Haftka and Gurdal 
[21]), mechanical equipment and parts design (Wilde [73], Papalambros and Wilde 
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[46], Anagnostou et al. [3]), analysis and design of control systems (Balakrishnan 
[4]), integrated circuit design (Brayton et al. [6]), prediction of molecular structures 
(Pardalos et al. [50]) and complex process design (Floudas and Pardalos [ 181). 

Motivated by the large number of applications, a number of global optimiza- 
tion algorithms have- been developed. These algorithms can be classified as either 
stochastic or deterministic depending upon whether they involve stochastic ele- 
ments or not. Stochastic methods converge to the global optimum with a proba- 
bility approaching one as their running time goes to infinity (Torn and Zilinskas 
[65], Schoen [56]). Deterministic approaches, on the other hand, take advantage 
of the mathematical structure of the problem and often guarantee finite conver- 
gence within a prespecified level of accuracy. Deterministic approaches include 
branch-and-bound (Falk and Soland [16], Tuy and Horst [69]), cutting plane algo- 
rithms (Tuy [66], Hillestad and Jacobsen [26], Tuy [67]) and hybrid schemes that 
involve cutting planes, decomposition and branch-and-bound. Recent surveys of 
deterministic methods can be found in Horst and Tuy [28] and Pardalos and Horst 
[481. 

Shortly after the development of branch-and-bound methods for integer pro- 
grams, the application of the same principles was suggested for continuous global 
optimization problems (Falk and Soland [16], Soland [59]). Branch-and-bound 
methods develop lower and upper bounds of the optimal objective function value 
over subregions of the search space. Optimality and feasibility criteria are employed 
in order to exclude certain subregions from further consideration while other sub- 
regions are dynamically refined. Although branch-and-bound techniques have led 
to the successful solution of large-scale integer problems, a great deal of difficulty 
seems to arise in the context of continuous problems. Continuous problems solved 
to proven global optimality so far have typically involved only a few variables and 
constraints. 

To improve the performance of branch-and-bound-based algorithms, sever- 
al approaches have been suggested. First, the observation that globally optimal 
solutions are often found early in the search has motivated the development of 
sufficient conditions under which a local minimizer is also a global minimizer 
(e.g., Falk [15], McCormick [40], Hiriart-Urruty [27], Phillips and Rosen [51], 
Danninger [9], Neumaier [45]). Another attempt for improving the performance 
of branch-and-bound methods has been through the development of tight relax- 
ations (e.g., McCormick [39], Sherali and Alameddine [57]). In other approaches, 
range reduction techniques have been developed to confine the search to a smaller 
space. By construction, relaxations developed over the resulting, smaller feasible 
spaces are tighter, and the convergence of the algorithm is accelerated (Thakur [63], 
Hansen et al. [23], Hamed and McCormick [22], Lamar [34], Ryoo and Sahini- 
dis [54]). Finally, realizing the importance of the subdivision strategy employed 
in branch-and-bound algorithms, Tuy [68] presented subdivision strategies that 
are less restrictive from the theoretical point of view and improve the practical 
performance of the algorithms substantially. 
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The approach taken in this paper aims at improving the performance of glob- 
al optimization algorithms by means of effective range reduction techniques. 
Although these techniques can be used in conjunction with any global optimization 
algorithm, we demonstrate their effectiveness within the branch-and-bound frame- 
work. We further develop the algorithm of Ryoo and Sahinidis [54], provide conver- 
gence proofs, develop specialized algorithms for univariate polynomial programs 
and linear multiplicative programs, describe a highly efficient implementation and 
present extensive computational results. Section 2 provides necessary background 
material on branch-and-bound. Section 3 presents optimality-based valid inequali- 
ties for problem P. These inequalities form the basis for the development of range 
reduction mechanisms. Applied at each node of the search tree, range reduction 
converts a standard branch-and-bound algorithm into a brunch-and-reduce global 
optimization algorithm. The details of the resulting global optimization algorithm 
are discussed in Section 4 and a convergence analysis is provided. An example 
is presented in Section 5. Specialized branch-and-reduce algorithms for univariate 
polynomial problems and linear multiplicative programming problems are devel- 
oped in Sections 6 and 7, respectively. Section 8 describes BARON, the computer 
implementation of the proposed algorithm, and presents extensive computational 
experiments with various classes of problems. The problems tested include engi- 
neering design problems, standard global optimization test problems, polynomial 
programs, concave quadratic minimization programs, linear multiplicative pro- 
grams and mixed-integer nonlinear programs. Finally, conclusions are provided in 
Section 9. 

2. Preliminaries 

Branch-and-bound (BB) is one of the most commonly used techniques in global 
optimization. Here, branching refers to successive partitioning (or subdivision) of 
the feasible domain, and bounding refers to the computation of lower and upper 
bounds, L and U, respectively, for the global optimum. The main feature of BB is 
its ability to delete inferior subsets of the original search space during the iteration 
process. At any iteration, subregions whose lower bounds, L,, are no better than 
the current upper bound (L, > U) can be deleted from the search. A typical BB 
for solving P is as follows: 

ALGORITHM 1. Brunch-and-Bound (at iteration Ic): 

Step 1. Partitioning: 

Partition the search region into finitely many subregions, Ml, 1 = 1, . . . , s. 

Step 2. Bounding: 

Select a subregion, Mi, and determine lower and upper bounds, L, and U,, 
such that L, < f(z) < Vi, Vx E iI&. 
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Step 3. Global Bounding: 

Set L(k) = min {Ll : I = 1, . . . , s} and UC”) = min {Ul : I = 1, . . . , s}. 

Step 4. Termination and Subproblem Selection: 

IfL(“) = UC’“), 

Stop. An optimal solution has been found. 

Otherwise, 

Select a subregion. 

Setktkfl. 

Repeat the process from Step 1. 

DEFINITION 1. A BB algorithm is calledfinite if L(k) = Utk) for some k < 00. 

If a BB algorithm is finite, a globally optimal solution is obtained at termination 
of the algorithm. On the other hand, if BB does not terminate in a finite number of 
steps, one needs to address the limit behavior. 

DEFINITION 2. A BB algorithm is called convergent if limk,, IU(k) -L(“) 1 = 0. 

There are three crucial operations in BB which determine the convergence prop- 
erties of the algorithm. These are partitioning (branching), bounding and selection 
and correspond to steps 1, 2 and 4, respectively, in the above algorithm. 

DEFINITION 3. (Definition IV.4 of Horst and Tuy [28]). A bounding operation 
is called consistent if at every step any unfathomed partition element is capable 
of further refinement and any infinitely decreasing sequence A&* of successively 
refined partition elements satisfies lim,,, ]Ui - Lfq 1 = 0. 

The last relationship requires that, whenever an infinitely decreasing sequence of 
partition sets emanating from a parent set converges to a certain limit set, the lower 
bound over this limit set also converges to the upper bound of the objective over the 
parent set. This condition is implied if the lower bound over the limit set converges 
to the upper bound over this limit set: lim,,, \Uqq - Li, 1 = 0. 

DEFINITION 4. (Definition IV.6 of [28]). The selection operation is said to be 
bound improving if at least one partition element where the actual lower bound is 
attained is selected for further partition. 

THEOREM 1. (Theorem IV3 of [28]). In the infinite BB procedure, suppose that 
the bounding operation is consistent and the selection operation is bound improv- 
ing. Then, the procedure is convergent. 
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In this paper, it will be assumed that a convergent (or finite) branch-and-bound 
algorithm is readily available for problem P. Although several such algorithms 
exist, often times the performance of a BB algorithm is not satisfactory, especially 
when the gap between the initial upper and lower bounds is large. In such a case, 
BB exhibits a slow, asymptotic convergence behavior. This behavior necessitates 
the development of methods to expedite convergence. To that effect, the following 
section develops range reduction mechanisms which can be used to detect and 
delete from further consideration inferior parts of the search space. 

3. Valid Inequalities and Range Reduction 

Consider the following relaxation of P: 

CR) : min f(x) 

s.t. G(x) 5 0 

XEX 

where f : X + ?12,3 : X -+ !Rm, X C X c Rn, such that, for any x feasible to P, 
f(x) < f(x), and where {x : g(x) 5 0, x E X} c {Z : O(Z) 5 0, II: E X}. 

ASSUMPTION 1. R is a convex programming problem. 

ASSUMPTION 2. A dual-adequate algorithm is available for solving R (An 
algorithm is called dual-adequate if it provides the dual solution in addition to the 
primal solution). 

Now, consider the perturbation of problem R: 

P%) : CP(Y) = min f(x) 
s.t. g(x) 5 y 

XEX 

As R is convex, so is R, for any y. Therefore, traditional nonlinear optimization 
techniques can be used to solve R, to global optimality since a local minimizer 
of R, is also a global optimizer. The following lemma is trivial to prove by 
contradiction. 

LEMMA 1. Let constraint gi (x) 5 0 be active at a solution of problem R. Then, 
& (x) 5 yi for y2 < 0 is also active at the solution of problem R,. 

The next lemma summarizes well-known properties of the perturbation problem. 

LEMMA 2. (e.g., Theorem 5.4 of Minoux 1411). Assuming that R has an optimum 
ofjnite value, p E ?J?” 1s a saddle-point multiplier if and only if the hyperplane 
with equation z = ~(0) - p * y is a supporting hyperplane at y = 0 of the graph 
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of the perturbation function cp( y). In other words, p is a saddle-point multiplier if 
and only if 

vy E 8” : cp(Y) 2 cp@) - P ’ Y 

This lemma ensures that a saddle point exists and the perturbation function is 
convex if R is a convex program satisfying standard constraint qualifications (e.g., 
[41]). On the basis of Lemmas 1 and 2, valid inequalities for P can be derived. 

DEFINITION 5. Let U be a known upper bound for P. An inequality is called 
valid for P if it does not exclude any solutions of P with objective function values 
better than U. 

THEOREM 2. Let R be a convex optimization problem with an optimal objective 
function value of L and consider a constraint gi (x) < 0 that is active at the solution 
of problem R with a dual multiplier value of p2 > 0. Let U be a known upper bound 
for problem P. Then, the following constraint is valid for P: 

&(x> 2 -(U - -q/Pi 
Proof Consider the following perturbation of problem P: 

WY> : a(y) = glob min f(z) 

s.t. 964 5 Y 
XEX 

Obviously, R, is a convex relaxation of PY for any y. Therefore, ‘p(y) 5 a(y), 
and a valid underestimator of p(y) is also a valid underestimator of cP(y). Now 
consider the perturbation problem R, where only the right hand side of constraint 
&(x) < yi is perturbed. From Lemma 2, we know that an underestimator for 
cp( y/i) is provided by its linear support L - /Liyt. Therefore, for any yzr we have 
L - pi yi I cp(yi) I G(y?). Now, requiring the value of @(y%) to be no higher than 
the already known upper bound U yields L - CL; yi(< @(yi)) < U. Finally, since 
&(x) 5 yi is active for yz = 0, the constraint will also be active in the solution 
of R, for any y; < 0 (Lemma 1). Therefore, L - pigi = L - u;y; 5 U. This 
constraint is valid for all feasible values of 2, as for any feasible x there exists a 
corresponding yi for which &(z) < yi is active. 0 
In the above proof, (1) - which might be nonconvex - was derived as a relaxation 
of the objective function cut $(x) < U - which is a convex constraint. However, 
(1) is easier to work with computationally as it is often linear as shown next. 

COROLLARY 1. Let R be a convex programming problem with an optimal objec- 
tivefunction value of L and consider a linear constraint a:x - b, 5 0 that is active 
at the solution of problem R with a dual multiplier value of pi > 0. Let U be a 
known upper bound for problem P. Then, the following constraint is valid for P: 

afx 2 b, - (U - L)/ul. (2) 
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COROLLARY 2. Let R be a convex programming problem with an optimal objec- 
tivefunction value of L and consider a range constraint xj - x7 < 0 that is active 
at the solution of problem R with a dual multiplier value of Xj > 0. Let U be a 
known upper bound for problem P. Then, the following constraint is valid for P: 

xj 2 x5’ - (U - L)/Xj. 

COROLLARY 3. Let R be a convexprogramming problem with an optimal objec- 
tivefinction value of L and consider a range constraint x,” - xi 5 0 that is active 
at the solution of problem R with a dual multiplier value of Xj > 0. Let U be a 
known upper bound for problem P. Then, the following constraint is valid for P: 

xj 5 x; + (U - L)/Xj. 

The development of valid inequalities (l)-(4) is based on the set of constraints that 
are active at the solution of the relaxed problem R. Valid inequalities, however, can 
also be derived from constraints that are not active in the solution of R by probing 
at certain parts of the feasible region where constraints might become active. In 
particular, one can temporarily fix the right-hand-side of an inactive constraint 
at some point, solve the partially restricted relaxed problem and obtain a linear 
support of the perturbation function at the solution point. This support can then be 
used to derive a valid inequality: 

THEOREM 3. Let R be a convex programming problem and consider a linear 
constraint a,“x - bi 5 0 that is not active at the solution of R. Let U be a known 
upper bound for problem P. Solve R a$terJixing six at b,, i.e., after adding the 
constraint b, 5 afx in the formulation. Let Z be the optimal objective function 
value of this partially restricted relaxed problem. If a positive dual multiplier u, 
is obtained for constraint bi 5 six in the solution of the new problem, then the 
following constraint is valid for P: 

afx 5 bi + (U - Z)/pi. (5) 

The proof of this theorem is omitted as it is similar to that of Theorem 2. Note 
only that the optimal value Z of the partially restricted relaxed problem may not 
provide a valid lower bound for P. In fact, (5) provides a useful constraint only 
whenever Z > U. 

COROLLARY 4. Let R be a convex programming problem and consider a range 
constraint x3 - x5/ < 0 that is not active at the solution of R. Let U be a known 
upper bound for problem P. Solve R after fixing xj at x5’, i.e., after adding 
x7 < xcj in the formulation. Let Z be the optimal objective function value of this 
partially restricted relaxed problem. If a positive dual multiplier Xj is obtained 
for constraint x5/ 5 xj in the solution of the new problem, then the following 
constraint is valid for P: 

xj < x:’ + (U - Z)/Xj. (6) 
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COROLLARY 5. Let R be a convex programming problem and consider a range 
constraint x:j - x,” > 0 that is not active at the solution of R. Let U be a known 
upper boundforproblem P. Solve R after$xing xj at x$, i.e., after adding xcj 5 x[ 
in the formulation. Let Z be the optimal objective function value of this partial& 
restricted relaxed problem. If a positive dual multiplier Xj is obtainedfor constraint 
xj < x,” in the solution of the new problem, then the following constraint is valid 
for P: 

xj > x,” - (U - Z)/Xj. (7) 

The valid inequalities derived in this section and the range reduction mechanisms 
based on them are summarized in Tables I and II. We use p to denote the optimal 
dual multipliers of linear/nonlinear constraints and X to denote the optimal multi- 
pliers (reduced costs) of simple variable bounds (range constraints). These valid 
inequalities were derived based on the optimal solution of the relaxed problem 
and by using an optimality argument. For this reason, they will be referred to as 
optimality-based valid inequalities. Although they may exclude solutions that are 
feasible to P, they do not exclude any solutions of P with objective function values 
better than U. Also, as (l)-(7) reduce the range of constraints and variables, they 
will be referred to as optimality-based range reduction mechanisms. 

TABLE I. Valid inequalities derived from active constraints. 

Active Constraint Requirement Valid Inequality 

TABLE II. Valid inequalities derived from inactive constraints after probing. 

Inactive Constraint Requirement Valid Inequality 

Add b, 5 at.7: to R. 

atx-b, <O Solve R and obtain Z. afx I b, + (c’ - Z)/p*. 

pi > 0 

xj < xy 

Add xy 5 x, to R. 

Solve Rand obtain Z. Xj 5 Xy + (I; - Z)/Xj 

Xj > 0 

Add x1 5 x,” to R. 

Solve R and obtain Z. x3 2 x,” - (I: - Z)/X, 
A, > 0 



A BRANCH-AND-REDUCE APPROACH 115 

Remark I. Since R was assumed to be a convex problem, it follows that (1) is 
a nonconvex (reverse convex) constraint if the corresponding inequality of R is 
nonlinear. Therefore, adding (1) to the relaxation destroys convexity. Still, (I) - as 
well as f(x) 5 U and f(z) 5 U - can be used for tightening variable bounds. In 
general, it is possible to use constraints along with feasibility arguments to reduce 
variable ranges (Hansen et al. [23], Hamed and McCormick [22], Ryoo [53], Ryoo 
and Sahinidis [54]). This process will be referred to as feasibility-based range 
reduction. 

Remark 2. Theorem 3 applies equally well when probing is done to any point b:, 
not necessarily equal to the right-hand-side of the constraint. In particular, probing 
can be applied by adding, for example, the constraint bi 5 afa: into the formulation 
of R for any b: 5 bi. Following the solution of problem R, one possibility is to use 
parametric optimization techniques to calculate the optimal value of the objective 
function as the value of a certain constraint is changed. This process can be stopped 
at the point where the objective becomes equal to the known upper bound U. At 
that point, the support of the perturbation function can be used to derive a new 
valid inequality. 

4. A Branch-and-Reduce Global Optimization Algorithm 

It should be obvious that the range reduction techniques of the previous section can 
be used to preprocess a global optimization problem before the use of any global 
optimization algorithm. In the context of a branch-and-bound algorithm, range 
reduction can be used to improve the performance of the bounding procedure 
at every node of the search tree. The following are the steps of the proposed 
algorithm: 

ALGORITHM 2. Branch-and-Reduce: 

Initialization Step 

Set Ic = 0. 

Set the upper bound UC”) = +IX. 

Put RI = R in the list ACTIVE of active subproblems with a corresponding 
lower bound of Ll = -cc. 

Go to the main step. 

Main Step (at iteration k) 

Step 1. Termination: 

Set the lower bound L(“) = minZ:Ri6ACTIVE {&}. 

Set ACTIVE t ACTIVE\{Rj} for all Rj with L, 2 UC”). 



116 HONG S. RYOO AND NIKOLAOS V. SAHINIDIS 

If ACTIVE = 0, 

Stop. The current best solution is optimal. 

Otherwise, 

Set Ic t Ic + 1, UC’) t U(‘-‘) and L(“) t L(“-‘1. 

Go to Step 2. 

Step 2. Subproblem Selection: 

Select Ri from ACTIVE according to a node selection rule. 

Set ACTIVE t ACTIVE\{Ri}. 

Go to Step 3. 

Step 3. Pre-processing: 

Tighten variable bounds for Ri using feasibility-based range reduction. 

Go to Step 4. 

Step 4. Bounding: 

Solve Ri, or bound its solution from below. Let L, be this lower bound (L, = 
+cc if Ri is infeasible.) 

If the solution, xi, found for R, is feasible to P and f(z’) < UC”), 

Update U(“) t f(zi). 

Make x7 the current best solution: x* t z’. 

If Li 2 u(“), 

Go to Step 1. 

Otherwise, 

Go to Step 5. 

Step 5. Optional Upper Bounding: 

Apply local search heuristics to find a better feasible solution, xh, for P. If 
successful, 

Update UC”) t f(xh). 

Make xh the current best solution: x* t xh. 

Go to Step 6. 

Step 6. Post-processing: 

Strengthen the bounds of variables using optimality-based and feasibility- 
based range reduction. 
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If the range reduction was successful in reducing the range of at least one 
variable of Ri by at least a prespecified amount S > 0, then: 

Reconstruct Ri, using the new variable bounds. 

Go to Step 4. 

Otherwise, 

Go to Step 7. 

Step 7. Partitioning: 

Apply a branching rule to Ri: obtain a set of new subproblems R,, , R,?, . . . . 
Ri, and place them on ACTIVE. 

Go to Step 1. 

4.1. COMPONENTS OF THE BRANCH-AND-REDUCE ALGORITHM 

4.1.1. Selection Operation 

Selection of a subproblem is accomplished by means of the best-bound-jut rule: 

Operation Node Selection: 

Select a subproblem Ri with i E arg minj,R, EACTIVE{ Lj}. 

Therefore, a subproblem where the actual lower bound of the previous iteration 
is attained is always selected for further refinement. This node selection rule is 
bound improving by definition. Bound improvingness will, in general, be required 
for convergence and is not shared by other branching rules such as depth-first. 

4.1.2. Partitioning Operation 

The partitioning operation is required to satisfy xi, c xi for all 4. This requirement 
is met by several partitioning schemes: conical, simplicial or rectangular (Tuy et al. 
[70], Tuy [68]). Any of them can be used in the context of the above algorithm. We 
prefer rectangular subdivisions for their simplicity. Let zk be an optimal solution 
of the relaxed subproblem Ri selected in Step 2 at iteration ,k of the algorithm. 
Also, let z* be the incumbent solution and K be a pre-specified positive integer. 
The following is the rectangular partitioning operation of the algorithm: 

Operation Partitioning: 

Select a variable x3 which is “mostly responsible” for the difference U, - Lt. 

ifk=NK(N= 1,2,...),then 
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else 

if ~5’~ 
3 < XT < xy’” then set w  = x:j* else set w  = xf .I 

endif. 

Create two subproblems by subdividing [x,“~“, x7”] into [xf’“, w] and [w: xyk]. 

The first step in the above operation is to select the branching variable. This 
should be done in a way that will lead to the largest possible reduction of the relax- 
ation gap. The exact variable selection rule will therefore depend on the bounding 
procedure used. If, for example, separable relaxations are used (e.g., [38]), one can 
select a variable corresponding to a nonconvex term in P whose underestimator in 
Ri has the largest distance from the nonconvex term at the solution of Ri. A simpler 
variable selection rule is to select a variable corresponding to the largest range: 
j E argmaxjf (~2” - x$“,. Once the branching variable is selected by standard 
means, Partitioning uses a combined maximum-deviation/bisection/incumbent- 
branching rule for branching point selection. In a typical iteration, the solution 
of Ri is used as the branching point. Bisection ensures a reasonable reduction in 
the sizes of the descendant subrectangles every K iterations. Finally, whenever 
possible, the branching point is positioned in a way that eliminates the gap at the 
incumbent solution. For any given x*, this last modification of the standard max- 
imum deviation branching point will occur no more than n times in any nested 
sequence of subdivisions. The following is immediate. 

PROPOSITION 1. Operation Partitioning guarantees xi, C xi, for all q. 

4.1.3. Bounding Procedure 

The bounding procedure is comprised of Steps 3,4, 5 and 6 of the algorithm. The 
underestimating functions and relaxed problems of Step 4 are required to possess 
the following properties: 

REQUIREMENT 1. Let Gi := {x E ?R2” : ijl(~) < 0, I = l,...,m} for some 
subproblem R, . Then, we have Gi, c Gi for all q descendants of Ri. 

REQUIREMENT 2. Li = U, if xy = x,” for all nonconvex variables of P in the 
relaxed problem R;. (Here, the term nonconvex is used to denote those variables 
that appear in nonconvex terms in P.) 

From Requirement 1, Assumption 1 and Proposition 1, it follows that: 

PROPOSITION 2. Ali9 = Giq n xz, c Gi n J?, = A& and Lig > Li for ~11 q. 
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The construction of relaxed problems that satisfy the above requirements can be 
done in more than one way (e.g., Falk and Soland [ 161, McCormick [38,39], Sherali 
and Alameddine [57]). We prefer to use factorable programming techniques [38, 
391 for their simplicity. In all of the above lower bounding approaches, the tightness 
of the lower bound directly depends on the tightness of the variable bounds. For this 
reason, Step 3 applies feasibility-based range reduction techniques to obtain tighter 
variable bounds. Similarly, optimality-based and feasibility-based range reduction 
mechanisms are used in Step 6 after the solution of the current relaxed problem. 

Finally, Step 5 performs the optional upper bounding operation. Any prob- 
lem specific heuristic or any other global optimization method - for example, 
a stochastic optimization method - can be incorporated in this step. Successful 
variable bounds tightening in Steps 3 and 6 will facilitate the calculation of good 
feasible solutions in Step 5. The reverse is also true as a tighter upper bound, U, 
on the optimal objective implies the possibility of further range reduction through 
the inequalities of Tables I and II. Additionally, range reduction based on objective 
function cuts is facilitated by a stronger upper bound U. 

PROPOSITION 3. The branch-and-reduce algorithm does not cycle between Steps 
4 and 6. 

Proofi Steps 4 to 6 are repeated only if range reduction is successful in reducing 
the range of at least one variable of Ri by at least a prespecified amount 6 > 0. 
As the feasible region is bounded (xi E x C Zl?), this range reduction can only 
happen a finite number of times before either Ri is deleted by infeasibility or infe- 
riority (in Steps 4 or 5), or X~ ’ = x4 for all nonconvex variables, in which case 
Li = U, (from Requirement 2) and sibproblem Ri will again be deleted in Step 4. q 

Remark 3. Another way to ensure that the algorithm does not cycle between 
Steps 4 and 6 is to monitor the effect of range reduction on the lower bound of R, 
and to return to Step 4 only if the improvement is larger than a certain prespecified 
positive amount. 

4.2. CONVERGENCEOFTHEALGORITHM 

The analysis will be based on Theorem 1 of Section 2 and the above mentioned 
properties of the partitioning rule and relaxations used. Without loss of generality, 
we can assume that f is continuous over G n x (follows from convexity). 

LEMMA 3. The bounding operation in the algorithm is consistent. 
Prooj In order to prove the consistency of the bounding operation, we need to 

prove that for any infinitely nested sequence IMi, generated by the algorithm, we 
have lim,,, pi* - Li* 1 = 0. L e X* be the solution of Ri,. There are two cases t 
to consider: 
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Case 1. f is (semi) continuous: 
Whenever there is a positive underestimation gap, the gap is due to the presence 

of nonconvex variables with ~7” - xi”” > 0. By the (semi) continuity of f and f 
and by Requirement 2, we have lim &(x4) = f* = lim f(zQ) as (zy” - zctq) + 0 
for all nonconvex variables meaning that lim,,, ]Uiq - Li, 1 = 0. 

Case 2. f is discontinuous: 
(i) First, consider the case in which there is a discontinuity only at Xd, and Xd 

is the unique globally optimal solution of problem P. Since (xy” - x,“‘“) + 0 as 
Q -+ 00 and since f is (semi) continuous at every feasible point other than Xd, we 
have fj(xj) + f (x2) for all lMzj except IMzg where X,j is contained. Therefore, 
&fig will remain as the only unfathomed partition element as q + cc. Moreover, 
by the continuity and convexity off; we have lim,,, f,(xq) = f” = Lfq (Such a 
limit exists since {f,(xq)} is monotone and bounded above by f (xq)). Now since 
Xd = lim,,, x4, as q + 00 , 
= f”(xd) = Lip. 

we have (Since Xd iS feasible t0 P) Uip = f (Xd) 

For the case where Xd is one of many globally optimal solutions, since we set 
Uig as the lowest upper bound found, lim,,, IUi9 - Liq 1 = 0 is ensured as in 
Case 1. Finally, it should be obvious that for other cases where Xd is not a globally 
optimal solution, lim,,, lUig - Liq 1 = 0 is ensured in a similar way as in Case 
1. 

(ii) The case where there are more than one discontinuities in f eventually 
reduces to Case 2.(i) as the branch-and-bound procedure is applied, and, therefore, 
lim,,, IQ - Lzq 1 = 0 will be achieved in the same way as above. 0 

THEOREM 4. The branch-and-reduce algorithm converges to the solution of P. 
Pro05 The proof follows from Theorem 1 and the following: 

(i) The range reduction mechanisms are valid. Hence, even though the range 
reduction Steps 3 and 6 may eliminate feasible solutions, none of these solutions 
is better than the current incumbent (Definition 5). 

(ii) The bounding operation employed in the algorithm is consistent (Lemma 3). 
(iii) The selection operation of the algorithm is bound improving (Definition 4). 
(iv) Cycling is not possible in the algorithm (Proposition 3). 0 

5. Example 

The following example is taken from Al-Khayyal and Falk [2]: 

glob min -xl + 21x2 - 22 

s.t. 

-6x1 +8x2 5 3 

3x1 -22 5 3 

(Xk x,“) = 0 < 2 5 5 = (XY, X3 

63) 

(9) 

(10) 
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This is a jointly constrained bilinear program with a nonextremal boundary 
optimal solution at x = (1.16667, 0.5)t with f = -1.08333. The objective has 
only one bilinear term (~1x2) whose convex envelope is readily available (e.g., 
McCormick [39], Al-Khayyal and Falk [2]): max{@xl + xyx2 - z?z~, xtzt + 
Z$Z~ - xtxi}. To avoid non-differentiability in the relaxed problem formulation, 
we let 23 = 21x2 and include two additional constraints: 

min -xl - x2 + x3 

s.t. 

xyx1 + xyx2 - x3 5 xI;‘xy 

xix, + xfx2 - x3 < xfxi 

Constraints (@-(lo). 

A standard branch-and-bound algorithm corresponds to executing Steps 1,2,4, 
5 and 7 without modifying the maximum deviation branching point as described in 
Section 4.1.2. This algorithm requires 5 1 iterations to reduce the difference between 
the upper and lower bounds to within low6 despite the fact that the optimal solution 
was found at the root node by the local minimization step (Step 5). If operation 
Partitioning is used to modify the branching point, then the search requires only 
13 iterations using the same termination criterion as above (10P6). We will now 
illustrate the effect of range reduction mechanisms. In particular, inequalities (3), 
(4), (6) and (7) will be used for optimality-based range reduction. In addition, 
feasibility-based range reduction will be done by analyzing the constraints. For 
example, (8) will be used to generate two valid inequalities: xl > (8x,” - 3)/6 
and 22 5 (6x? + 3)/8. Finally, the objective function cut -xl + 21x2 - x2 5 U 
yields two inequalities for xl: min{xfxi - xk - U, xfxy - xy - U} 5 x1 and 
21 < (U + xy)/x,” + 1. Similar inequalities are obtained for x2. 

When Step 3 of the branch-and-reduce algorithm is entered initially, the bounds 
on the variables are 0 5 XI I 5,0 < 22 < 5 and 0 < x3 (= ~1x2) 5 25. Upon 
exit from this step, the variable bounds become 0 5 xi 5 1.5, 0 5 22 < 1.5 
and 0 5 23 5 2.25. (For this example, feasibility-based range reduction has the 
same effect on bounds as solving 2n linear programs to minimize and maximize 
individual variables.) Using the improved bounds, a relaxed problem is constructed 
(Step 4). The solution to this relaxed problem is x1 = (0.643, 0.857, O)t and 
produces a lower bound of L = L’ = - 1.5 and an upper bound U = -0.949. Using 
x1 as the starting point for local minimization (Step 5) with MINOS [43] yields 
U = -1.005 and x* = (0.917, 1.062, 0.974)t. As all range constraints have 
zero multipliers at x’ , optimality-based range reduction in Step 6 can be applied 
using only (6) and (7). After selecting 22 for probing, (6) and (7) improve the 
bounds on x2 to 0.004 < x2 5 1.28 1. The results hereafter can be seen in Table III. 
Eventually, after three cycles through Steps 4 to 6, the objective function cut results 
in 1.125 5 x 1 5 1.121. This means that there are no feasible solutions for which 
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the current incumbent can be improved. Hence, the algorithm terminates at the root 
node with no branching required. 

For this example, Table IV compares the algorithm with other approaches. In the 
table, Cm, n>, NM, Opt, Nmem an d E, respectively, denote the size of the relaxed 
problem (number of constraints and variables), the total number of iterations, the 
node where the optimal solution was found, the memory requirements during the 
search (maximum number of nodes that had to be stored simultaneously), and the 
termination criterion (difference between upper and lower bounds at termination) 
used. The entries of the first two rows of Table IV are taken from Sherali and 
Alameddine [57] and the CPU times of the first three algorithms are all on an IBM 
3090 supercomputer whereas the branch-and-reduce time is on an IBM RW6000 
66MHzPower PC. 

TABLE IV. Comparative computational results for the Al-Khayyal and Falk example [2]. 

Method (m,n) Not N,,t nine, CPU sec. E 

Al-Khayyal and Falk [2] (4>3) >103 51 20 >55* 0.001 
Sherali and Alameddine [57] (23,5) 11 10 7 14* 0.001 

Sherali and Tuncbilek [58] (23,5) 1 1 1 0,71* *** 

Branch-and-Reduce (4,3) 1 1 1 0,15*x 0 

*: Computation was done on an IBM 3090 supercomputer. 
**: Computation was done on an IBM RS/6000 66MHz-Power PC. 
***: A relative criterion of 1% (i.e., L 1 c’ - 0.01 ]U]) was used for termination, although 
the lower bound reported was accurate to at least 3 decimal digits. 

6. Global Optimization of Univariate Polynomial Functions 

In this section we specialize the branch-and-reduce algorithm for the following 
class of problems: 

(POLY) : glob min f(x) = 6 u;xi 
i=O 

s.t. XL 5 x < x” 

where a,, i= 1 ,..., t, are given real numbers. 
The following theorem summarizes important properties of monomials. The 

proof is immediate. 

THEOREM 5. Let f* = a,x’ be a monomialfunction defined over xL 5 x 5 zCi. 
fi is convex over [XL., x’] if any of the following conditions holds: 
(i) x L zz g. 

(ii) xL 2 0 and a, > 0. 
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(iii) i = 2k (k = 1) 2,3, . . .) and a; 2 0. 
(iv) x” _< 0, i = 2k + 1 (k = 1,2,3, . . .) and ai 5 0. 
(v) xL x” 5 0, i = 2k (k = 1,2,3 ,...) anda; 2 0. 

In all other cases, fi is concave. 

If0 $ (x L, x”), the monomial a;zi is either convex or concave for any integer 
i. In this case, once the convex terms are identified, the terms in the objective of 
PO LY can be rearranged: 

(POLY) : glob min f(x) = c f;(x) + c f;(x) := fcv(x) + fee(x) 
iEcv iEcc 

s.t. XL 5 x 5 x” (11) 

where c’u and cc denote the sets of indices of monomials that are convex and 
concave, respectively. Now construction of the convex envelope for the composite 
nonconvex function can be easily achieved by underestimating the function fee in 
(11) by a linear function: 

(R - POLY) : min f(x) = fcv(x> t a + 13x 
s.t. XL 5 x 5 x” 

where ,D = (f&x’) - fcc(xL))/(xu - xL) and Q = fcc(xL) - @xL. 
The Newton-Raphson method will be used for solving R - PO LY because of 

its attractive convergence rate. The method can be further enhanced as follows: 

THEOREM 6. Let Ri be the current relaxation problem. The following assertions 
hold: 
(i) Iff”(xL) > 0, then xL is an optimal solution to Ri. 

(ii) Iff’(x”) 5 0, then x” is an optimal solution to R;. 
Proo$ Follows from convexity off. 0 

By making use of the two conditions of Theorem 6 in the lower bounding step, 
one can quickly check whether or not an optimal solution of a relaxed problem 
is readily available. Even when the conditions do not apply, they provide all the 
necessary information for range reduction based on probing. 

Now, the distinctive steps of the specialized algorithm can be stated. 

ALGORITHM 3. Poly: 

Operation Initialization: 

if 0 E (xL, x”) then 

Create two subproblems from R - PO LY: RI defined over [xL, 0] and 

R2 over [0, x”]. Put Rr and R2 in the list ACTIVE. 

else 
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Put R1 = R - POLY in ACTIVE. 

endif 

Set L(O) = -cc and U(O) = +oo. 

Go to the main step 

Operation Lower Bounding: 

if J’(&) 2 0 then 

Set zi (the optimal solution of R;) equal to c$. 

elseif p(zU) 5 0 then 

Set x2 equal to x”. 

else 

Solve R; using the Newton-Raphson method. Let x2 be the solution. 

endif 

Set Li = f(X’). 

The remaining steps of the algorithm for polynomials follow the description of 
the general algorithm of Section 4. 

7. Global Optimization of Linear Multiplicative Programming Problems 

This section addresses the development of a specialized branch-and-reduce algo- 
rithm for the following class of problems: 

(LMP) : globmin f(x) = fi f;(x) = fi (cix + cio) 
i=l i=l 

s.t. Ax 5 b 

c~x+c;o~O (i= l,...,p) 

where x E F, b E 9?Iz”, ci E ?Iz” and C;O E !J? (i = 1, . . . , p) and A E Wx n. 
Linear multiplicative programming problems have applications in microeco- 

nomics, VLSI chip design, bond portfolio optimization and multicriteria optimiza- 
tion problems (Kuno and Konno [33]). They are also closely related to other classes 
of global optimization problems. If p = 2, for example, LMP can be transformed 
into bilinear programming and a class of quadratic programming problems (Parda- 
10s [47]). The problem may possess several local minima (Konno and Kuno [31]) 
and its complexity is still open even for p = 2 (Pardalos [47]), even though more 
general LMPs are known to be M-hard (Konno et al. [32]). Without loss of 
generality, we will assume that cfx + cio > 0 (i = 1, . . . , p) over the feasible 
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set (If any one of the linear functions can assume the value of 0, then a globally 
optimal solution of LMP can be trivially found by individually minimizing the 
linear functions in the objective subject to the constraint set.) 

The following transformation facilitates the development of the relaxation: 

(LMP - T) : globmin ln(f(t)) = 2 ln(t;) 
i=l 

s.t. Ax 5 b 

c;x+c;()=t; (i= I,...$) 

ti >0 (ix l,...,p) 

THEOREM 7. LMP and LMP - T are equivalentproblems. 
ProoJ: Follows directly from the monotonicity of the logarithmic function. q 

As the objective in LMP - T is concave, the computation of lower bounds is 
achieved through the solution of linear programming subproblems: 

(R - LMP - T) : globmin fct) = k(Qi + Pit;) 
i=l 

s.t. Ax 5 b 
c;x + cg) = ti (i = I,...$) 

ti > 0 (i= l,...,p) 

where ,& = (ln(ty) - ln(tF))/(tu - tf) and CX~ = In(@) - /3& (i = l,..., p). 
Note that solving R - LMP - T requires lower and upper bounds for each 

product variable ti (i = l,..., p). To obtain these bounds, the problem is preprocessed 
at the initialization phase of the algorithm. First, each product variable is minimized 
individually subject to the original problem constraints to obtain its lower bound. 
This computation also provides upper bounds through function evaluations at the 
resulting feasible points. Let U denote the best of these bounds. Subsequently, 
the objective function cut f(x) = ny=‘=, ti < U yields the relationships t; 2 
U/I-&# tj (i = 1)“‘) p) which, in turn, provide the required upper bounds: 

(12) 

Note that (12) can be used in the pre- and post-processing steps of the algorithm 
at any node of the search tree. 

The following are the problem-specific steps of the specialized branch-and- 
reduce algorithm for LMPs: 
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ALGORITHM 4. Linear Multiplicative: 

Operation ZnitiffZizutiun: 

Set L(O) = --oo. 

Individually minimize ti (i = 1, . . . . p) subject to the constraint set. Let x2 
(i = l,..., p) be the solution vectors and tf (i = 1,. . . ,p) the corresponding 
solution values. 

Set U(O) = mini=r,...,P{f(xZ)}. 

Calculate ty (i = 1,. . . ,p) from (12). 

Put R1 = R - LMP - 2’ in the list ACTIVE of active subproblems. 

The remaining steps of the algorithm for LMPs follow the description of the 
general algorithm of Section 4. 

Remark 4. In order to obtain an e-optimal solution of LMP, Linear Multi- 
plicative must use exp(Li) 1 exp(U(“)) - E as the criterion for deleting inferior 
nodes. 

8. Implementation and Computational Experiments 

The computer code BARON (Branch-And-Reduce Optimization Navigator) has 
been developed to implement the proposed algorithm. BARON is a modular, all- 
purpose global optimization software that executes the branch-and-reduce global 
optimization strategy by navigating its way through user-provided subroutines. The 
user provides only problem-specific subroutines for computing the relaxations and 
for local minimization. A GAMS [7] and a FORTRAN version of BARON have 
been developed. Global optimization problems were collected from the literature 
and others were randomly generated in order to test BARON and demonstrate the 
wide applicability of range reduction and the branch-and-reduce algorithm. 

8.1. ENGINEERING DESIGN PROBLEMS AND STANDARD GLOBAL OPTIMIZATION 
TESTPROBLEMS 

A set of 27 engineering design problems and global optimization tests problems 
were solved first as seen in Table V. These problems include engineering design 
problems (Examples 2-5, 12-l@, a pooling problem (Example 7), early global 
optimization test problems (Examples 1, 22 and 23) and some others. Table V 
provides for each problem the source and problem size in terms of numbers of 
constraints (m), continuous (n,) and integer variables (ni). Detailed models, local 
and global solutions of the first 21 problems are reported in Ryoo and Sahinidis 
[541. 
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The FORTRAN version of BARON was used to solve these problems and the 
tests were run on a SUN SPARC Station 2. All the relaxation subproblems and 
NLP problems were solved using MINOS 5.4 [43]. Three different strategies were 
tested: BB, BRl and BR2. BB is a standard branch-and-bound strategy and does 
not involve the use of any range reduction techniques. BRl features the optimality- 
based range reduction tools of Table I, and BR2 makes use of all range reduction 
mechanisms of Tables I and II. An absolute optimality tolerance of E = lop6 was 
used throughout the experiments: at any iteration k, all subproblems (& ) with 
Li > U(“) - E were deleted. For the results presented in Table V, Ntot, Nopt and 
N mem denote the total number of iterations, the node in which the optimal solution 
is found, and the maximum number of nodes stored in memory during the search, 
respectively. A * in this table is used to indicate the examples that did not terminate 
within 1200 CPU seconds or N,,,= 1000 nodes. Finally, n, and ni denote the 
number of continuous and integer variables of the problem, respectively. 

As seen in Table V, standard branch-and-bound (BB) did not converge for 
many of the problems despite their small size. On the other hand, the use of 
range reduction made possible the solution of all problems within the prespecified 
time and memory limits. The use of probing (BR2) further reduces the memory 
requirements of the simpler algorithm (BRl) at the expense of somewhat higher 
CPU times for some of the problems. Ryoo and Sahinidis [54] solved the first 21 
of these test problems using the GAMS implementation of an earlier version of the 
algorithm. The results presented in Table V for these 21 problems improve those in 
[54] due to the use of tighter lower bounds, additional range reduction inequalities 
and an improved implementation. 

TABLE VI. Comparative computational results for unconstrained univariate polynomial functions 

Branch-and-Reduce Interval Arithmetic Method [24] 
Nested form Centered form 

Ex. Source Order Ntot Nopt ,vm,, CPU LYriot CPU nitot CPU 
No. (t) sec.* sec.** sec.** 

1 [75] 6 27 22 5 0.06 21 0.38 20 1.12 
2 [42] 50 17 16 5 0.06 44 6.30 34 72.96 
3 [74] 5 27 24 6 0.06 19 0.30 18 0.78 
4 [ll] 4 11 0 3 0.04 32 0.40 31 1.16 
5 [ll] 6 7 0 4 0.01 21 0.34 23 1.22 
6 [19] 6 31 10 7 0.06 37 0.70 37 2.04 
7 [lo] 4 9 9 3 0.01 16 0.22 16 0.50 

*: IBM RS/6000 66MHz-Power PC. 
**: SUN 3/50-12 workstation. 
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8.2. POLYNOMIAL PROGRAMS 

Comparative computational results for unconstrained univariate polynomial func- 
tions are provided in Table VI. The FORTRAN version of BARON was used in 
this computation and the tests were run on an IBM RS/6000 66MHz-Power PC 
with an absolute optimality tolerance of E = 10p7. No local minimization was 
used and upper bounding was based on function evaluations. Hansen et al. [24] 
solved the same set of problems in the same order. The results with two different 
interval arithmetic methods from [24] are also provided in Table VI for compari- 
son. Although the CPU times of all approaches are small for most problems, [24] 
reports much larger CPU times for Example 2 than for any of the other problems. 
Example 2 involves the largest number (50) of monomial functions. The branch- 
and-reduce algorithm seems to be insensitive to the order of the polynomial and 
takes less than 0.1 set to solve any of these problems. This is due to a very efficient 
implementation of the lower and upper bounding procedures. The performance of 
the proposed algorithm seems to depend on the difference between the relaxation 
value at the root node and the optimal solution of the nonconvex problem. The 
initial lower bounds and global optima for these problems are shown in Table VII. 
Examples 1 and 6 present the largest gap between the two bounds and require the 
largest number of iterations of the algorithm. 

TABLE VII. Gap between initial lower bounds and global optima for 
polynomial examples. 

Example Number Initial Lower Bound (L’) Global Optimum 

1 -138,468.40 -29,763.23 
2 -22,933.59 -663.50 
3 - 1764.29 -443.71 
4 - 101.82 0 
5 -6.34 0 
6 - 1546.79 7 
7 -9.14 -7.50 

8.3. LINEARMULTIPLICATIVEPROGRAMMINGPROBLEMS 

As there are not many LMP test problems in the literature, we generated random 
problems to test the algorithm. These problems varied in sizes from (m, n)=(50,50) 
to (200,200) with p ranging from 2 to 5. The objective cost coefficients were 
generated in the range [0, lo]. Finally, the elements of A and b of the constraint 
set Az 5 b were generated from [- 100, 0] to ensure a finite optimal solution. 
Using different seeds, ten random instances were generated and solved by Linear 
Multiplicative of Section 7 on an IBM RS/6000 66MHz-Power PC. The FORTRAN 
version of BARON was used with an absolute optimality tolerance of E = 10W6. 
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Neither local minimization nor probing were used for these problems and the linear 
programming subproblems were solved using IBM’s OSL (Release 2). 

TABLE VIII. Computational results for LMPs with p = 2. 

Problem Size Tree Size CPU seconds 

50 

100 

50 

100 

150 

100 

150 

200 

150 

200 

50 

50 

100 

100 

100 

150 

150 

150 

200 

200 

9.6 2.8 4.0 0.7 0.2 0.2 0.1 0.0 
3 1 3 0.4 0.1 0.1 0.0 0.0 
15 9 5 1.0 0.3 0.5 0.2 0.0 

13.8 4.7 4.7 1.8 0.4 0.8 0.5 0.0 
11 1 4 1.4 0.3 0.5 0.2 0.0 
21 13 6 2.5 0.5 1.1 1.0 0.0 
1.4 2.8 3.1 1.0 0.4 0.3 0.2 0.0 

1 1 1 0.5 0.2 0.0 0.0 0.0 
21 15 6 1.9 0.6 1.0 0.5 0.0 
6.6 2.7 3.2 2.0 0.7 0.5 0.5 0.0 

1 0 1 0.8 0.4 0.0 0.0 0.0 
11 7 5 2.9 1.8 1.3 1.3 0.0 

10.6 4.2 3.8 4.0 1.1 1.7 0.9 0.0 
1 1 1 1.5 0.6 0.1 0.0 0.0 

21 15 6 7.3 2.6 5.0 2.1 0.0 
6.8 3.2 3.2 2.8 1.3 0.8 0.5 0.0 

1 1 1 1.9 0.6 0.1 0.0 0.0 
21 13 7 6.1 1.9 2.5 1.5 0.0 
8.0 2.8 3.3 6.0 2.7 1.9 0.9 0.0 

1 1 I 2.7 2.0 0.2 0.1 0.0 
21 9 7 9.7 5.1 4.8 2.4 0.0 
8.6 4.1 3.4 9.1 3.5 3.5 1.5 0.0 

1 1 1 5.1 1.4 1.3 0.1 0.0 
19 12 7 12.9 5.2 5.7 4.8 0.0 
8.6 4.1 3.3 10.6 4.9 3.9 1.2 0.0 

1 1 1 1.9 1.1 0.1 0.1 0.0 
19 11 6 19.2 10.0 8.8 2.8 0.0 
8.6 4.0 3.4 15.7 8.7 4.4 1.8 0.0 

1 1 1 8.3 3.5 0.4 0.1 0.0 
27 15 8 25.6 14.2 11.2 6.7 0.0 

Tables VIII and IX provide computational results with p = 2 and p = 5. Results 
with p = 3 and p = 4 are similar (see Ryoo [53]). In these tables, Ttot, Ttntt, T,,l, 

Tf eas, and Topt denote total CPU time spent, time for the initialization, time spent 
on solving relaxed subproblems, time spent on feasibility-based range reduction 
and time spent on optimality-based range reduction, respectively. For each problem 
size, three rows of results are presented and correspond to the average, the best 
and the worst case performance of the algorithm over the 10 different random runs 
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TABLE IX. Computational results for LMPs with p = 5. 

Problem Size Tree Size CPU seconds 

50 

100 

50 

100 

150 

100 

150 

200 

1.50 

200 

50 

50 

100 

100 

100 

150 

150 

150 

200 

200 

327.4 140.7 79.8 19.5 0.5 13.2 5.4 0.0 
187 7 49 12.6 0.4 5.7 2.4 0.0 
561 321 117 31.1 0.6 21.8 8.5 0.1 

426.0 166.3 100.6 54.6 0.9 43.2 10.0 0.0 

16.5 1 59 21.3 0.7 16.1 3.9 0.0 

529 380 135 74.6 1.2 62.1 15.8 0.1 

292.2 64.6 79.8 28.3 1.2 18.9 7.8 0.1 

83 1 32 6.9 0.9 3.4 2.5 0.0 

519 299 130 52.4 1.7 36.8 14.0 0.1 

419.2 169.3 97.5 84.1 2.0 62.0 19.2 0.1 

123 1 40 23.3 1.7 14.3 6.9 0.0 

841 555 152 161.1 2.5 124.9 36.7 0.1 

589.8 374.0 130.9 198.1 3.7 153.4 40.0 0.1 

371 235 63 100.6 2.5 68.3 24.9 0.0 

951 907 225 300.5 4.7 231.5 63.0 0.2 

480.3 261.3 108.2 140.7 3.5 102.8 33.5 0.1 

113 3 33 33.9 2.1 13.8 12.3 0.0 

1311 831 214 419.6 4.7 298.0 70.6 0.3 

529.5 302.0 115.8 256.1 6.4 192.2 56.2 0.1 

203 87 37 104.5 4.1 45.8 31.1 0.0 

1071 538 230 457.3 9.6 378.7 97.7 0.3 

603.7 403.5 143.7 465.1 9.3 374.8 79.4 0.1 

257 29 51 168.0 5.8 124.3 34.8 0.1 

1237 796 255 1191.5 12.9 974.7 129.4 0.3 

542.8 299.6 137.6 345.6 12.0 263.9 68.1 0.2 

287 1.0 86 195.2 7.6 143.3 36.7 0.1 

919 549 253 687.7 16.3 566.8 107.8 0.3 

677.7 457.5 147.6 650.4 17.3 515.3 115.5 0.2 

437 131 104 333.4 12.8 242.1 71.1 0.1 

1135 905 219 1273.8 22.0 1037.1 176.7 0.4 

for each performance measure. It can be seen through these tables that optimality- 
based range reduction tests consume but a very small fraction of the total CPU 
time whereas a considerable amount of time is spent at the initialization phase for 
preprocessing of the bounds. For a constant number of products in the objective, 
Tables VIII and IX indicate a weak dependence of the problem complexity on 
the total number of variables. Figure 1 presents average results over all problem 
sizes (m, n) as a function of the number of products (p). For the problems solved, 
there seems to be a low-order polynomial relationship between CPU time and 
the number of products. The generated problems were very difficult as denoted 
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by the gap between the initial bounding LP and the optimal solution. This gap 
averaged from 8 to 46 % in the examples solved as shown in Table X. The initial 
LP bound in this table was computed after the initialization phase which includes 
some feasibility-based range reduction tests. 

2 3 4 5 

Number of products 

Fig. 1. CPU seconds versus the number of products for IMPS. 

TABLE X. Gap between global optimum and ini- 
tial lower bound for LMPs with various problem 
sizes. 

Gap = (f - L’)/Lr x 100 
cm, n) p=2 p=3 p=4 p=5 

(5OSO) 9 23 45 53 
(100,50) 14 27 46 56 
(50,100) 11 23 32 47 
(100,100) 8 24 35 55 
(150,100) 12 30 40 58 
(100,150) 6 17 28 34 
(150,150) 3 19 29 37 
(200,150) 5 22 32 38 
(150,200) 3 18 28 37 
(200,200) 4 18 28 40 

Average 8 22 34 46 

8.4. PRELIMINARY RESULTS WITH MINLPs AND SEPARABLE QPs - 

Some preliminary computational studies on a SUN SPARC Station 2 with mixed- 
integer nonlinear programs (MINLPs) and quadratic programs (QPs) are reported in 
Tables XI and XII, respectively. In addition to the MINLP Examples 13-I 5 of Table 
V, Examples 14 in Table XI were solved. The number of integer variables (n,) in 
the problems ranged from 3 to 25. The concave quadratic programming problems 
(Examples l-5 of Table XII) are from Section 2.7 of Floudas and Pardalos [ 181. The 
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problems of Tables XI and XII were solved with an absolute termination criterion 
of lo@ using the GAMS version of BARON. No probing was used for optimality- 
based range reduction. The results of this subsection are only preliminary in the 
sense that pre-processing and post-processing are not extensive and do not exploit 
the special properties of the problems. These results are presented to illustrate the 
versatility of the proposed algorithm. Nevertheless, comparative computational 
results shown in Table XIII for the QPs indicate that the algorithm is competitive 
to the Reformulation-Linearization Technique (Sherali and Tuncbilek [58]). The 
preliminary implementation of the branch-and-reduce algorithm takes a larger 
number of iterations to converge. Yet, the relaxations used are simpler to solve and 
thus the resulting CPU times are competitive. 

TABLE XI. Preliminary computational results for MINLPs. 

Ex. No. Source m n, n? ivfOt W,,, N,,,,, CPU sec. 

1 [12] 6 3 3 3 2 2 2 
2 [13] 14 6 5 7 6 4 5 
3 [20] 23 9 8 9 8 8 10 
4 [l] 5 5 25 83 81 14 280 

TABLE XII. Preliminary computational results for QPs. 

Ex. No. Source m n Ntot ATopt ,vm,, CPU sec. 

1 [I81 10 20 145 1 38 20 
2 1181 10 20 145 1 38 16 
3 [I81 10 20 145 1 38 15 
4 [I81 10 20 145 1 38 16 
5 [I81 10 20 325 63 90 53 

TABLE XIII. Comparative computational results for QPs. 

Reformulation-Linearization [58] Branch-and-Reduce 
Ex. Optimality LD-RLT-NLP LD-RLT-NLP(SC) 
No. Tolerance CPU sec. No. of CPU sec. No. of CPU sec. No. of 

% IBM 3090 Iterations IBM 3090 Iterations SUN Spare 2 Iterations 
1 5 8.13 7 3.29 3 5.34 35 
2 5 2.54 1 2.61 1 1.57 13 
3 5 13.26 11 2.55 1 3.86 35 
4 5 5.04 5 2.61 1 1.45 13 
5 5 27.00 25 15.94 11 5.05 69 
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9. Conclusions 

Range reduction techniques were presented in this paper as a means of performance 
improvement in global optimization algorithms. These techniques are based on 
optimality and feasibility criteria and were incorporated in the branch-and-bound 
framework to demonstrate their use. The philosophy of the resulting branch-and- 
reduce algorithm is to improve the lower and the upper bounds on the value of the 
global optimum by reducing the ranges of the continuous variables. The versatility 
and the efficiency of the algorithm were demonstrated by applying it to engineering 
design problems, standard global optimization test problems, univariate polynomi- 
al functions, mixed-integer nonlinear problems, concave quadratic programming 
problems and linear multiplicative programming problems. 

The proposed algorithm was implemented in the global optimization software 
BARON. An experimental FORTRAN version of the code can be obtained by 
anonymousftpfromaristotle.me.uiuc.edu. 
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